



Equipos para la educación en ingeniería

Programa completo

Innovador sostenible eficiente

El programa GUNT completo con más de 650 equipos de todas las áreas del programa

Versión del catálogo en PDF

GUNT Quality Made in Germany

La excelente calidad de nuestros productos, la alta productividad y amplios conocimientos técnicos hacen que GUNT este contribuyendo de forma significativa en todo el mundo en la educación técnica

En nuestra sede en Barsbüttel, cerca de Hamburgo, trabajan 150 empleados altamente cualificados en una superficie de 10.000 m² entre producción y oficinas. Desde el desarrollo y el diseño hasta la producción y el transporte, todo se encuentra bajo el mismo techo.

Alemania es reconocida por su excelente estructura para la educación en formación técnica y de ingenierías. Desde 1979 nuestro lema ha sido:

Desde Alemania a cualquier parte del mundo

Visite nuestra página web: www.gunt.de

Pie de imprenta

© 2024 G.U.N.T. Gerätebau GmbH

La reutilización, el almacenamiento, la reproducción y la reimpresión del contenido – ya sea total o parcial – sólo están permitidos con la autorización escrita.

GUNT es una marca registrada. Los productos GUNT están protegidos por derechos de autor.

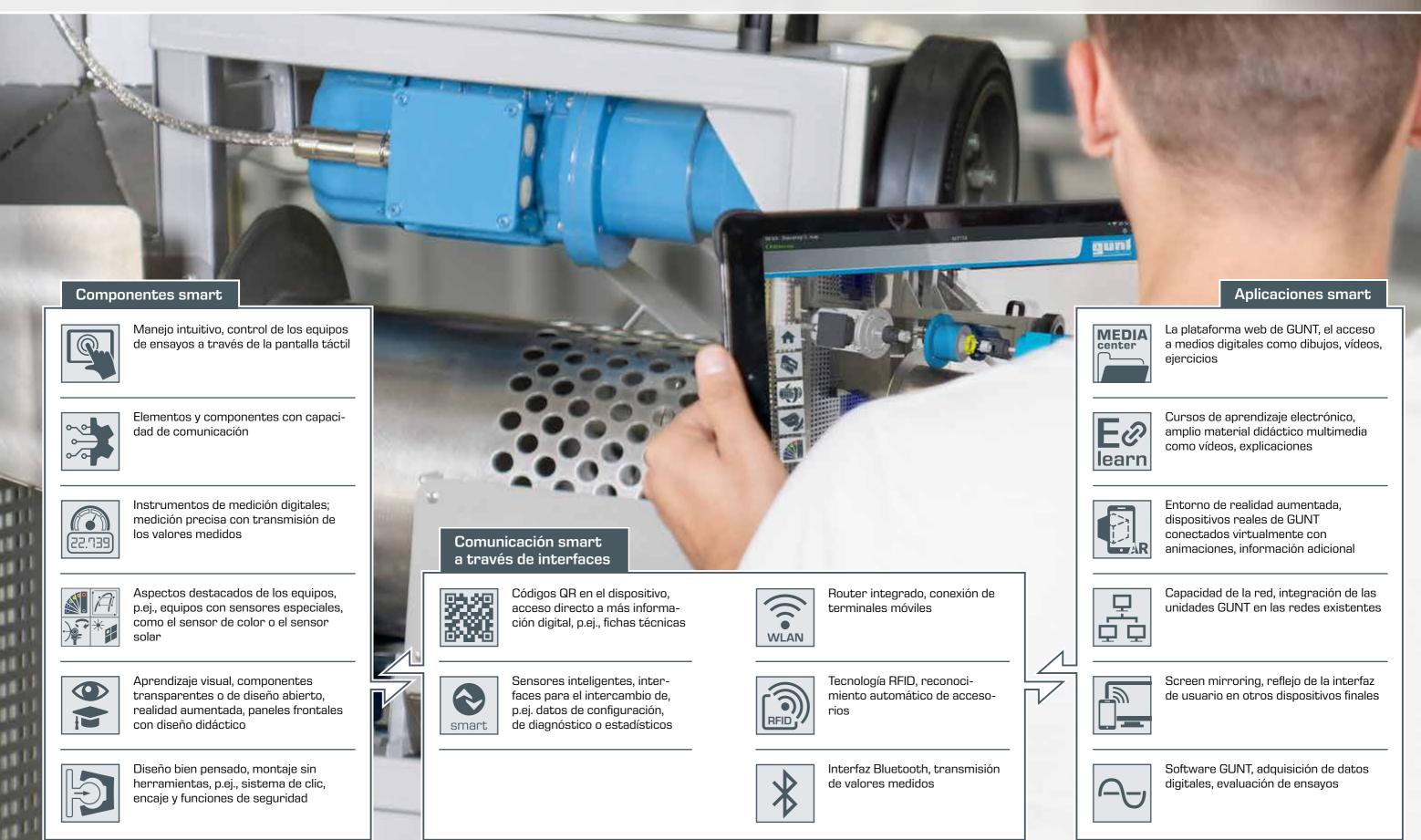
No se proporciona ninguna garantía por fallos de impresión. Reservado el derecho a efectuar

Entognafíae

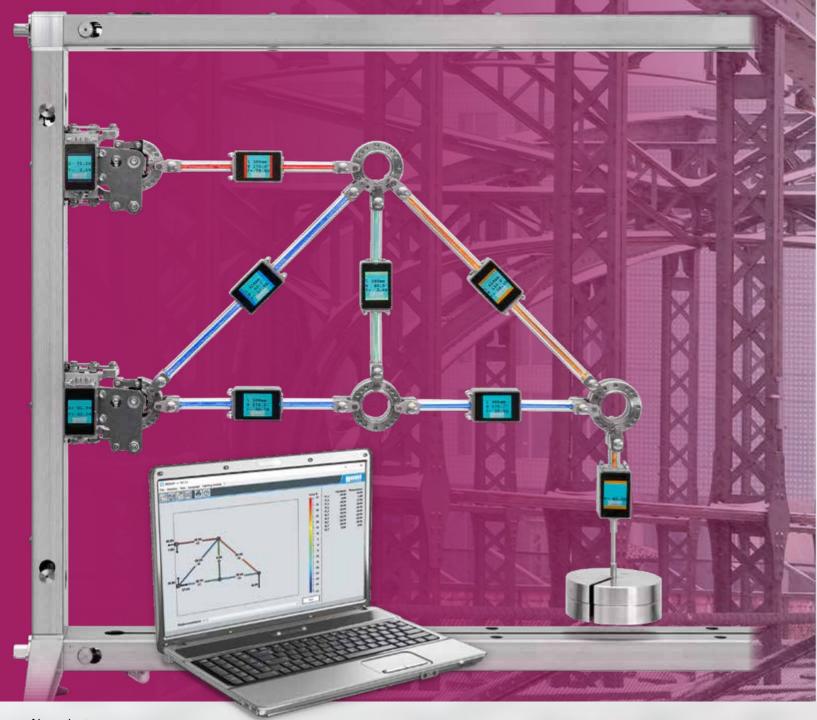
GUNT Gerätebau GmbH, fotografías del fabricante. Shutterstock.

Diseño v composición

Profisatz.Graphics, Bianca Buhmann, Hamburgo.



Enseñanza práctica de la ingeniería — con las funciones SMART de GUNT


Digitalización de los contenidos de aprendizaje tradicionales

Enseñanza práctica de la ingeniería —

con las funciones SMART de GUNT

1 | Mecánica y diseño mecánico

Mecánica – estática

Fuerzas y momentos	800
Puentes, vigas, arcos, cables	009
Esfuerzos y métodos de secciones	011
Esfuerzos en celosías	012
Rozamiento estático y dinámico	013

Mecánica – resistencia de materiales

Deformaciones elásticas	014
Pandeo y estabilidad	018
Esfuerzos compuestos	019
Análisis experimental de esfuerzos y deformaciones	019

Mecánica – dinámica

Cinemática	021
Cinética: ensayos básicos de dinámica y momento de inercia	022
Cinética: dinámica de rotación	023
Vibraciones	024

Dinámica de máquinas

Dinámica de rotores Equilibrado Fuerzas de inercia y compensación de masas	
Equilibrado Fuerzas de inercia y compensación de masas Aislamiento de vibraciones	uinas 025
Fuerzas de inercia y compensación de masas Aislamiento de vibraciones	025
Aislamiento de vibraciones	026
	npensación de masas 026
Diagnóstico de máquinas	nes 027
	s 028

Diseño mecánico

Dibujo técnico	030
Modelos seccionados	031
Elementos de máquina: sujetadores	032
Elementos de máquina: rodamientos	033
Elementos de máquina: elementos de transmisión	034
Kits de montaje	036

Ensayo de materiales

Tracción, compresión, flexión y dureza	038
Ensayo de resiliencia	038
Ensayo de torsión	039
Fatiga del material	039
Tribología y corrosión	040

Mecánica y diseño mecánico

Mecánica – estática Fuerzas y momentos

TM 110 **Fundamentos** de la estática

Demostración del equilibrio de las fuerzas, equilibrio de los momentos, descomposición de fuerzas, ley de la palanca

TM 110.02

Equipo complementario polipastos

Estructura y funcionamiento de tres polipastos diferentes

TM 110.03

Equipo complementario engranajes

Funcionamiento de engranajes de una o varias fases

SE 200.05

MEC - Fuerzas del cable y polipasto

Estructura y funcionamiento de dos polipastos diferentes; dos variantes de construcción posibles cada una

SE 200 Bastidor de montaje necesario

TM 115 Esfuerzos en plumas de grúa

Determinación gráfica y experimental de fuerzas

SE 112 Bastidor de montaje

Montaje claro y simple de ensayos sobre estática, resistencia de materiales v dinámica

SE 110.53

Equilibrio en un sistema plano estáticamente determinado

Asimilación experimental del principio importante: de liberación de coacciones de la estática SE 112 Bastidor de

TM 121

Equilibrio de momentos en poleas de cable

Representación ilustrativa del equilibrio de momentos

TM 122

Equilibrio de momentos en un polipasto diferencial

Equilibrio de las fuerzas y de los momentos; relación entre ahorro de fuerza y recorrido del cable

FL 111

Esfuerzos en celosías simples


Descomposición de fuerzas

EM 049

Equilibrio de momentos en una palanca de dos brazos

Estudio de las fuerzas ejercidas, los momentos generados y del equilibrio

Mecánica – estática

Puentes, vigas, arcos, cables

SE 110.18

Esfuerzos en un puente colgante

Fuerza del cable carril y demostración de momentos de flexión en

SE 112 Bastidor de montaje necesario

SE 200.02

MEC - Esfuerzos en un puente colgante

Fuerza del cable carril y demostración de momentos de flexión en el carril; ensayos con una calzada flexible o con una rígida

SE 200 Bastidor de montaje necesario

Mecánica – estática

Puentes, vigas, arcos, cables

SE 110.12

Líneas de influencia en una viga Gerber

Determinación de las reacciones del apoyo vía método de intersección y condiciones de equilibrio de la estática

SE 112 Bastidor de montaje necesario

SE 110.16

Arco parabólico

Diferencias entre

hiperestáticos

arcos isostáticos e

SE 112 Bastidor de

montaje necesario

SE 200.07

MEC - Viga Gerber

Reacciones del apoyo vía método de intersección y condiciones de equilibrio de la estática para calcular las fuerzas de apoyo para carga puntual, carga uniformente distribuida y carga móvil

SE 200 Bastidor de montaje necesario

SE 200.03

MEC - Puente de arco parabólico

Puente arqueado con arco de apoyo por debajo de la calzada; diferencias entre arcos isostáticos e hiperestáticos

SE 200 Bastidor de montaje necesario

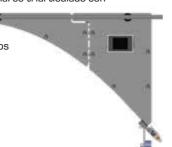
SE 110.17

Arco triarticulado

Carga de arcos simétricos/asimétricos con carga puntual, lineal o móvil

SE 112 Bastidor de montaje necesario

SE 200.06


MEC Line

MEC - Arco triarticulado

Reacciones en los apoyos de unarco triarticulado con

diferentes cargas, arcos parciales para la construcción de arcos simétricos/asimétricos SE 200 Bastidor de montaje necesario

Mecánica – estática

Esfuerzos y métodos de secciones

WP 960

Viga biapoyada: esfuerzo cortante y momento flector

Aplicación del método de las secciones para la determinación de esfuerzos en la viga

WP 961

Viga biapoyada: esfuerzo cortante

Aplicación del método de las secciones para determinar el esfuerzo cortante

WP 962

Viga biapoyada: momento flector

Aplicación del método de las secciones para determinar el momento flector

SE 110.50

Catenaria

Catenaria: cable suspendido bajo el efecto de su propio peso

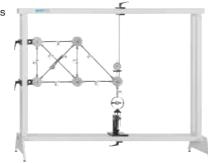
SE112 Bastidor de montaje necesario

Mecánica – estática Esfuerzos en celosías

SE 110.21 Esfuerzos en diversos montajes de celosías planas

Medición de esfuerzos de barra con ayuda de la extensometría

SE 112 Bastidor de montaje necesario



SE 110.22

Esfuerzos en celosías hiperestáticas

Comparación de fuerzas en celosías isostáticas e hiperestáticas

SE112 Bastidor de montaje necesario

SE 200 MEC - Frame

digital & inteligente

Bastidor de montaje y conexión digital, amplios experimentos de mecánica

SE 200.01

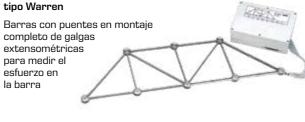
MEC - Esfuerzos en las celosías

Medición de esfuerzos de barra; comparación de fuerzas en celosías isostáticas e hiperestáticas SE 200 Bastidor de montaje necesario

MEC Line

SE 130

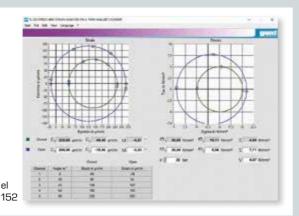
Esfuerzos en celosías tipo


Estudio de los esfuerzos de barra en diferentes casos de carga

SE 130.01

Esfuerzos en celosías

completo de galgas extensométricas para medir el esfuerzo en


FL 152

Amplificador de medida . multicanal

Tratamiento de señales de medición analógicas para análisis de tensiones FL120 a FL140 o para las celosías de GUNT

Evaluación con el software en FL152


Mecánica – estática

Rozamiento estático y dinámico

TM 200

Fundamentos del rozamiento mecánico

Cuerpo de rozamiento fijo, placa de rozamiento en movimiento uniforme

TM 210

Rozamiento de cuerpos sólidos

Dinamómetro con amortiguador neumático regulable para determinar fuerzas de rozamiento; efecto slip-stick

TM 225

Rozamiento en un plano inclinado

Equilibro estático y transición de adhesión a deslizamiento

TM 220

Transmisión por correa y rozamiento de la correa

Ángulo de arrollamiento, coeficiente de fricción y fuerza del cable (fórmula de rozamiento en cables de Eytelwein)

SE 200.04

MEC - Rozamiento en un plano inclinado

Medición del coeficiente de fricción estática y rozamiento dinámico en un plano inclinado, experimentos con diferentes combinaciones de materiales

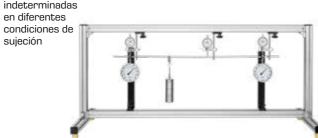
SE 200 Bastidor de montaje necesario

Mecánica – resistencia de materiales Deformaciones elásticas

SE 110.14

Línea elástica de una viga

Demostración del teorema de Maxwell-Betti


SE 112 Bastidor de montaje necesario

WP 950

Deformación de vigas de eje recto

Líneas elásticas de vigas estáticamente determinadas e indeterminadas

Deformación de vigas de eje curvo

Principio de las fuerzas virtuales (método de magnitud de la fuerza) para determinación de la deformación

SE 110.44 Deformación de celosías

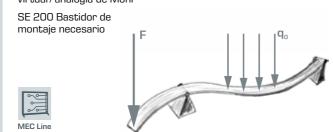
Aplicación del primer teorema de Castigliano

SE112 Bastidor de montaje necesario

SE 110.47

Métodos para determinar la línea elástica

Línea de plegado de una viga; principio del trabajo virtual / analogía de Mohr


SE 112 Bastidor de montaje necesario

SE 200.11

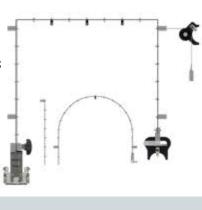
MEC - Línea elástica de las vigas

Línea de plegado de una viga; principio del trabajo virtual/analogía de Mohr

de un pórtico isostático o hiperestático bajo carga puntual; pórtico en forma de U y de S

SE 112 Bastidor de montaje necesario

SE 200.09


MEC - Deformación de pórticos

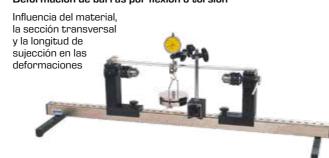
Deformación de un material compuesto bajo carga; deformación elástica de un pórtico estáticamente isostático y el estáticamente hiperestático bajo carga puntual

SE 200 Bastidor de montaje necesario

MEC Line

SE 110.29

Torsión de barras


Estudio de la torsión elástica de barras con sección transversal abierta y cerrada

SE 112 Bastidor de montaje necesario

WP 100

Deformación de barras por flexión o torsión

TM 262

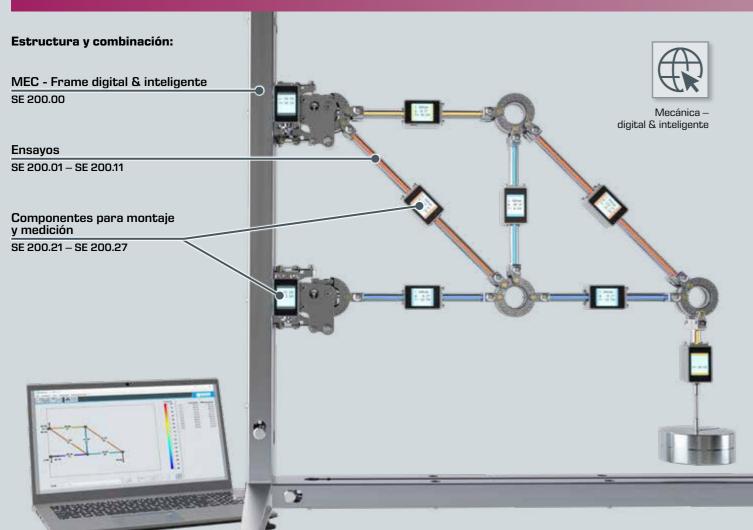
Presión de Hertz

Demostración de la superficie de contacto que se forma como función de la fuerza de contacto

TM 400 Ley de Hooke

Comportamiento elástico de muelles de tracción bajo carga

SE 200.10


MEC - Torsión de barras

SE 200.01

MEC - Esfuerzos en las celosías

SE 200.04

MEC - Rozamiento en un plano inclinado

SE 200.07

MEC - Viga Gerber

SE 200.10

MEC - Torsión de barras

SE 200.02

MEC - Esfuerzos en un puente colgante

SE 200.05

MEC - Fuerzas del cable y polipasto

SE 200.08 MEC - Pandeo

SE 200.11

MEC - Línea elástica de las vigas

SE 200.03

MEC - Puente de arco parabólico

SE 200.06

MEC - Arco triarticulado

SE 200.09

MEC - Deformación de pórticos

Todos los ensayos con los accesorios necesarios en una mirada

Componentes para montaje y medición como accesorios

SE 200.21 MEC - Apoyo

Apoyo con módulo electrónico para el registro de datos y la representación de los valores de medición; medición de las fuerzas en la dirección x e y

SE 200.22

MEC - Unidad de carga

Unidad de carga con módulo electrónico para el registro de datos y la representación de los valores de medición; medición del esfuerzo y del ángulo de entrada

SE 200.23

MEC - Medición de la distancia

Medición de la distancia con módulo electrónico para el registro de datos y la representación de los valores de medición; determinación automática de la dirección de medición

SE 200.24

MEC - Carga vertical

Carga con módulo electrónico para el registro de datos y la representación de los valores de medición; diferentes pesos para

diferentes pesos para generar cargas verticales

SE 200.25

MEC - Carga

Cargas con módulo electrónico para el registro de datos y la representación de los valores de medición; registro de la posición a través de un lector de códigos Gray

SE 200.27

MEC - Juego de barras

Barras con módulos electrónicos para el registro de datos y la representación de los valores de medición; para ampliar las celosías en el equipo SE 200.01

SE 200.26

MEC - Carga uniforme

Carga uniforme con módulo electrónico para el registro de datos y la representación de los valores de medición;

SE 200 | MEC Line Mecánica – digital & inteligente

Mecánica – resistencia de materiales Pandeo y estabilidad

SE 110.19

Estudio de problemas de estabilidad sencillos

Determinación de la carga crítica de pandeo en diferentes condiciones generales

SE 112 Bastidor de montaje necesario

WP 120

Pandeo de barras

Verificación de la teoría de Euler sobre el pandeo: influencia de material, sección transversal, longitud y apoyo

WP 121

Demostración: casos del pandeo de "Euler"

Relación entre longitud de pandeo, carga de pandeo y diferentes tipos de apoyo

SE 110.57 Pandeo de barras

Determinación de la carga crítica de pandeo: influencia de material, apoyo y fuerza transversal

SE112 Bastidor de montaje necesario

SE 200.08

MEC - Pandeo

Pandeo bajo la influencia de diversas formas de apoyo, diferentes secciones y diversos materiales; verificación de la teoría de Euler

SE 200 Bastidor de montaje

Mecánica – resistencia de materiales Esfuerzos compuestos

FL 160 Flexión asimétrica

Estudio de la flexión recta y oblicua así como de la carga combinada de flexión y torsión

WP 130

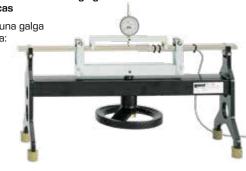
Comprobación de hipótesis de tensiones

Fatiga multiaxial de probetas mediante flexión y torsión

Mecánica – resistencia de materiales Análisis experimental de esfuerzos y deformaciones

FL 100

Sistema didáctico de galgas extensométricas


Ensayos de tracción, flexión y torsión con punto de medición para galgas extensométricas y circuito de puente completo

FL 102

Determinación del factor k de galgas extensométricas

Calibración de una galga extensométrica: medición de deflexiones y deformaciones

FL 101

Juego de aplicación galgas extensométricas

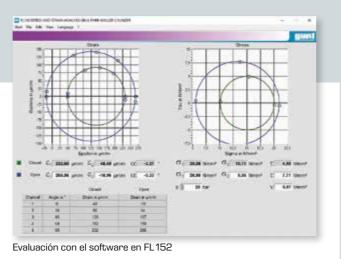
Equipo completo para practicar el manejo con la técnica de medición con galgas extensométricas

Mecánica – resistencia de materiales Análisis experimental de esfuerzos y deformaciones

FL 120 Análisis de tensiones en una membrana Curvatura y deformación de una membrana sometida a esfuerzo; membrana con

Análisis de tensiones en un recipiente de pared delgada Tensión axial y circunferencial a partir de las deformaciones medidas; recipiente con aplicación de galgas extensométricas

FL 140 Análisis de tensiones en un recipiente de pared gruesa


Estado de tensión en tres ejes en la pared del recipiente; recipiente con aplicación de galgas exten sométricas en la superficie y a lo largo del espesor de la pared

FL 152 Amplificador de medida multicanal

Tratamiento de señales de medición analógicas para análisis de tensiones FL120 a FL140 o para las celosías de GUNT

FL 200

Ensayos fotoelásticos de tensiones con polariscopio de transmisión

llustración de tensiones mecánicas en modelos bajo diferentes cargas

Mecánica – dinámica

KI 110

Modelo cinemático: mecanismo de biela-manivela

Transformación de un movimiento giratorio en un movimiento oscilante

KI 120

Modelo cinemático: plato de manivela

Transformación de un movimiento giratorio uniforme en un movimiento de elevación plenamente armónico

KI 130

Modelo cinemático: mecanismo de cuatro barras

Transformación de un movimiento giratorio en un movimiento oscilante

KI 140

Modelo cinemático: mecanismo de retorno 🔐 rápido "Whitworth"

Movimiento de elevación irregular con movimiento de admisión lento y movimiento de compresión rápido

KI 150

Modelo cinemático: árbol de junta Cardán

Fenómeno del error de cardan en acoplamientos articulados y su evitación

Modelo cinemático: mecanismo de dirección "Ackermann"

Determinación del ángulo de avance de un trapecio de dirección; influencia de la longitud del tirante de separación

GL 105

Modelo cinemático: engranaje

Estudio de relaciones de transmisión en los engranes rectos

Mecánica – dinámica

Cinética: ensayos básicos de dinámica y momento de inercia

TM 610

Momento de inercia rotacional

Momentos de inercia de diferentes disposiciones de masa y cuerpos

Modelo cinetico: volante de inercia

Determinación experimental del momento de inercia

TM 611

Dinámica de un cuerpo rígido sobre el plano inclinado

Determinación de inercias de giro mediante ensayos de desenrollado y de péndulo

GL 210

Comportamiento dinámico del engranaje recto multietapa

Estudio dinámico de un engranaje cilíndrico de una, dos o tres

GL 212

Comportamiento dinámico del engranaje planetario multietapa

Estudio dinámico de un engranaje de dos etapas, cada cual con tres ruedas planetarias; cuatro diferentes transmisiones ajustables

Mecánica – dinámica

Cinética: dinámica de rotación

TM 600

Fuerza centrífuga

Regularidades del comportamiento de masas giratorias

TM 605

Fuerza de Coriolis

Fuerzas virtuales en un sistema de referencia giratorio

TM 632

Reguladores centrífugos

Curvas características y curvas de ajuste de diferentes reguladores de fuerza centrífuga

TM 630 Giroscopio

Verificación experimental de las leyes de giroscopios

Mecánica – dinámica **Vibraciones**

TM 150 Sistema didáctico de vibraciones

Experimentos sobre amortiguación, resonancia y efectos de absorción con vibraciones forzadas

SE 110.58

Vibración libre en una viga de flexión

Viga de flexión con masa desplazable; método de aproximación de Rayleigh

SE112 Bastidor de montaje necesario

TM 161 Péndulo de varilla y péndulo de hilo

Comparación de péndulo físico con péndulo matemático

TM 162

Péndulos con suspensión bifilar/trifilar

Momentos de inercia de diferentes cuerpos mediante ensayo de péndulo giratorio

TM 163

Vibraciones torsionales

Periodo de vibración en función de la longitud del hilo de torsión, diámetro y masa de giro

TM 164

Vibraciones en muelles en espiral

Influencia de la rigidez de resorte, masa y distribución de la masa sobre la frecuencia de vibración

Dinámica de máquinas Vibraciones en las máquinas

TM 155

Vibraciones libres y forzadas

Experimentos básicos sobre estudio de las vibraciones mecánicas

TM 150.02

Vibraciones torsionales libres y amortiguadas

Influencia de masa, rigidez a la torsión y amortiguación sobre el comportamiento de un oscilador torsional. Trazar las vibraciones en el registrador del TM150/TM155.

TM 140

Vibraciones torsionales libres y forzadas

Ensayos ilustrativos en una barra de torsión con diferentes masas; oscilador multimasa

HM 159.11

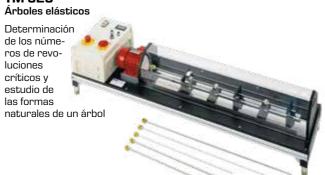
Vibraciones propias en el modelo de barco

Comportamiento dinámico de la estructura de un barco; ensayos en el aire y en el agua

Dinámica de máquinas Dinámica de rotores

TM 620

Rotores flexoelásticos


Estudio de vibraciones de flexión y resonancia en un árbol rotatorio

TM 625

Árboles elásticos

de los números de revoluciones críticos y estudio de las formas naturales de un árbol

Dinámica de máquinas **Equilibrado**

TM 170 Equipo de equilibrado

Equilibrado estático, dinámico y general en un eje

Dinámica de máquinas

Fuerzas de inercia y compensación de masas

TM 180

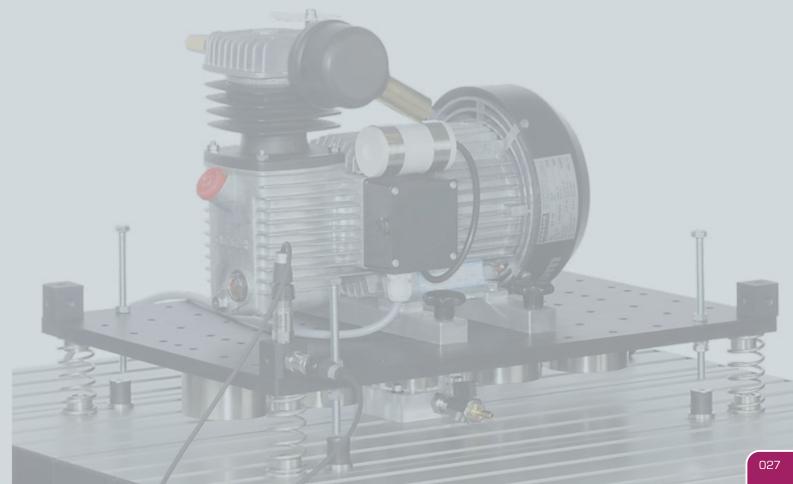
Fuerzas en motores alternativos

Estudio de las fuerzas inerciales en una máquina de pistones reciprocantes

GL 112

Análisis de los mecanismos de leva

Comparación de levas diferentes; registro de curvas de elevación



Dinámica de máquinas **Aislamiento de vibraciones**

TM 182Vibraciones en fundamentos de máquinas
Cimentación de máquinas y aislamiento de vibraciones

Dinámica de máquinas Diagnóstico de máquinas

PT 500 Sistema de diagnóstico de máquinas, unidad básica

Unidad básica para realizar varios ensayos relacionados con el diagnóstico de máquinas, utilizando kits de accesorios modulares

PT 500.10 Kit de árbol elástico

Vibraciones de flexión del árbol elástico

PT 500.11

Kit de árbol con fisura

Comportamiento de vibración del árbol con una grieta radial

PT 500.12

Kit de defectos en rodamientos

Evaluación del estado de los rodamientos a través de un análisis de vibraciones

PT 500.13

Kit de acoplamientos

Análisis de vibraciones en acoplamientos

PT 500.14

Kit de transmisión por correa

Vibraciones en transmisiones por correa

PT 500.15 Kit de defectos

en engranajes

Análisis de vibraciones causadas por defectos en engranajes

PT 500.16

Kit de mecanismo de biela y manivela

Vibraciones en mecanismos articulados

PT 500.17

Kit de cavitación en bombas

Observar y medir fenómenos de cavitación

PT 500.18

Kit de vibraciones en soplantes

Identificación de las vibraciones provocadas por los álabes móviles dentro del espectro de vibraciones

PT 500.19

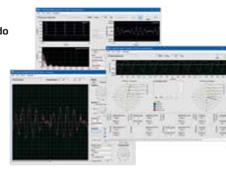
Kit de vibraciones electromecánicas

Interacción del sistema electromagnético - mecánico

PT 500.05

Equipo de frenado y carga

Generación de un momento de carga;


aplicable en diversos ensayos

PT 500.04

Analizador de vibraciones asistido por PC

Compatible con todos los ensayos de diagnóstico de máquinas de la serie PT 500

PT 501

Daños en rodamientos

Estudio de vibraciones de rodamientos

Diseño mecánico Dibujo técnico

TZ 200.07

Kit de montaje: cizalla de palanca

Cizalla de palanca de acero apta para funcionar: introducción

TZ100 – TZ300 forman parte del

proyecto de aprendizaje GUNT DigiSkills 1.

Además de la consecución de contenidos de dibujo técnico, con GUNT DigiSkills 1 también se desarrollan competencias digitales integrales.

Diseño mecánico Modelos seccionados

031

Diseño mecánico Modelos seccionados

Diseño mecánico Elementos de máquina: sujetadores

MG 901 Kit de tornillos y tuercas

Extensa colección didáctica de los tornillos y las tuercas más importantes utilizados en el maquinado de piezas

MG 905 Kit de pernos: perfiles de roscas

Denominaciones y términos conforme a la norma de tipos de rosca diferentes, determinación del tipo de la rosca con el calibre para roscas

MG 903

Kit de seguros de tornillos

Denominaciones y términos conforme a la norma, representación gráfica de seguros de tornillo diferentes

TM 320

Comprobación de uniones roscadas

Relación entre el par de apriete y la fuerza de sujeción en tornillos normalizados

TM 310

Comprobación de roscas

Grados de eficiencia en roscas de distintos materiales y pasos de rosca

Diseño mecánico

Elementos de máquina: rodamientos

MG 911

Kit de rodamientos

Conocimiento de los distintos tipos de rodamientos más importantes y su aplicación específica

Elementos de máquina: elementos de transmisión

GL 100 Principio de los engranajes

Principios básicos de transmisión de correas, ruedas de fricción, engranajes

TM 123 Engranaje recto

TM 124

sin fin

Funcionamiento y estructura de un engranaje de tornillo sin fin

Engranaje de tornillo sin fin

Funcionamiento y estructura

de un engranaje de tornillo

TM 220

Ángulo de arrollamiento, coeficiente de fricción y fuerza del cable (fórmula de rozamiento en cables de Eytelwein)

GL 110

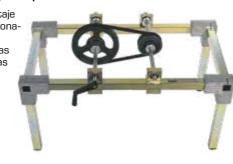
Mecanismo de leva

Demostración y medición de las curvas de desplazamiento de mecanismos de leva

Transmisión por correa y rozamiento de la correa

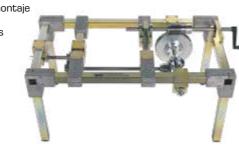
AT 200

Determinar la eficiencia de engranajes


Dispositivo de ensayo para determinar la potencia de accionamiento y frenado mecánica de un engranaje recto o de un engranaje helicoidal

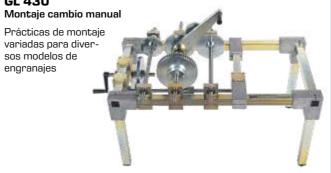
GL 410

Montaje engranajes simples


Prácticas de montaje variadas para accionamientos sencillos con correas, ruedas dentadas y cadenas de rodillos

GL 420

Montaje engranajes combinadas


Prácticas de montaje variadas para accionamientos compuestos

GL 430

Montaje cambio manual

variadas para diversos modelos de

GL 200

Engranaje para tornos

Estudio claro y sin peligro del funcionamiento de engranajes de un torno convencional

Contemplaciones del equilibrio para determinar la transmisión de fuerza y el rendimiento

Diseño mecánico **Kits de montaje**

MT 190

Montaje aparato de ensayo universal

Proyecto de aprendizaje con gran orientación a la práctica para la formación en profesiones metalúrgicas: construcción de un aparato comprobador hidráulico de tracción/compresión

MT 190.01

Montaje adquisición de datos en el aparato de ensayo

Kit de las especialidades "mecánica y electrónica": sistema de adquisición de datos apto para funcionar con el aparato de ensayo universal MT190

MT 171

Montaje cojinete de deslizamiento hidrodinámico

Comprensión de los componentes y sus funciones; montaje y mantenimiento

MT 120

Kit de montaje: engranaje recto

Funcionamiento y construcción de un engranaje recto con dentado oblicuo; planificar, montar, desmontar

El material didáctico multimedia via internet

MT 121

Kit de montaje: engranaje cónico

Funcionamiento y construcción de un engranaje cónico; planificar, montar, desmontar

El material didáctico multimedia via internet

MT 122

Kit de montaje: engranaje planetario

Funcionamiento y construcción de un engranaje planetario; planificar, montar, desmontar

El material didáctico multimedia via internet

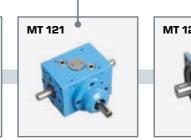
NAT 422

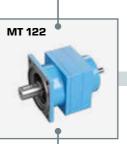
Kit de montaje: engranaje recto de tornillo sin fin

Funcionamiento y construcción de un engranaje recto de tornillo sin fin; planificar, montar, desmontar

El material didáctico multimedia via internet

/IT 173


Banco de ensayos para engranajes


Dispositivo de ensayo para determinar la eficiencia mecánica de los diferentes engranajes, control de instalación mediante PLC

MT 120

MT 174 Planta de clasificación

Mantenimiento preventivo basado en el ejemplo de un proceso de separación, control de instalación mediante PLC

Ensayo de materiales

Ensayo de materiales
Tracción, compresión, flexión y dureza

WP 300

Ensayo de materiales, 20kN

Ensayos de tracción y de dureza Brinell; registro de diagramas tensión/alargamiento

WP 310

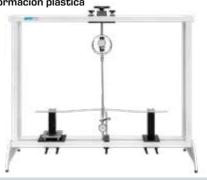
Ensayo de materiales, 50kN

Generación de fuerzas de compresión y tracción para ensayos de materiales

SE 100

Bastidor para ensayos de esfuerzo, 400kN

Ensayos de esfuerzo en estructuras de acero e ingeniería civil; el tamaño permite realizar mediciones en construcciones reales



SE 110.48

Ensayo de flexión, deformación plástica

Observación y determinación del paso de deformación elástica a plástica

SE112 Bastidor de montaje necesario

Ensayo de materiales Ensayo de resiliencia

WP 400

Ensayo de resiliencia, 25Nm

Ensayo de resiliencia clásico según el principio de Charpy; probetas con diferentes secciones transversales y materiales

WP 410

Ensayo de resiliencia, 300 Nm

Ensayo de resiliencia según Charpy con capacidad de trabajo ampliada

Ensayo de materiales Ensayo de torsión

WP 500

Ensayo de torsión, 30 Nm

Experimentos fundamentales sobre el esfuerzo de torsión

WP 510

Ensayo de torsión 200Nm, accionamiento a motor

Ensayo clásico de los ensayos de materiales; cuatro diferentes velocidades de prueba

Ensayo de materiales Fatiga del material

WP 140

Ensayo resistencia a la fatiga

Resistencia a la fatiga de barras expuestas a un esfuerzo cíclico de flexión; diagrama de Wöhler

WP 600

Ensayo de fluencia

Demostración de fenómenos típicos en procesos de fluencia con diferentes materiales

Ensayo de materiales Tribología y corrosión

Unidad de accionamiento para ensayos tribológicos

Sistema de ensayo modular sobre el rozamiento de deslizamiento y el rozamiento por rotación

TM 260.01 Rozamiento por rodadura en ruedas de rozamiento

Fuerzas de deslizamiento de dos ruedas que se rozan entre sí

TM 260.02

Comportamiento elastohidrodinámico Estudio de la forma y el espesor de películas lubricantes

TM 260.03 Desgaste de un perno en un disco

Estudios de desgaste de un par de materiales con contacto superficial

TM 260.04

TM 260.05

Estudio de desgaste

en combinaciones

de rozamiento con contacto puntual

Desgaste de un bloque en un cilindro

Vibraciones por rozamiento Diferencias entre rozamiento por adherencia y rozamiento de deslizamiento, inestabilidad

TM 260.06

Distribución de presión en cojinetes de deslizamiento

Demostración de la distribución de presión en un engrase hidrodinámico

TM 232

Rozamiento en cojinetes

Rozamiento en cojinetes de deslizamiento de diferentes materiales, comparación con el rozamiento en rodamientos

Rozamiento en cojinetes de deslizamiento

Estudio experimental de los fundamentos de la lubricación hidrodinámica

TM 290

Cojinete de deslizamiento con lubricación hidrodinámica

Influencia del número de revoluciones, del juego de cojinete y de la carga de cojinete sobre el desplazamiento del bulón del cojinete; bulones del árbol con diferentes diámetros

TM 280

Distribución de presión en cojinetes de deslizamiento

llustra el principio del engrase hidrodinámico

CE 105

Corrosión de metales

Estudio paralelo de diferentes variables de influencia en diferentes probetas de metal

Enseñanza práctica de la ingeniería —

con las funciones SMART de GUNT

Al producto:

2 | Mecatrónica

Diseño mecánico

Dibujo técnico	044
Modelos seccionados: engranajes y elementos de accionamiento	046
Modelos seccionados: componentes de la técnica de refrigeración	048
Modelos seccionados: elementos de la construcción de tuberías	050
Elementos de máquina: sujetadores	054
Elementos de máquina: rodamientos	055
Elementos de máquina: elementos de transmisión	056

Kits de montaje	058
Elementos de accionamiento y engranajes	058
Valvulería Valvulería	061
Compresores	062
Tuberías	062

Componentes de instalaciones: válvulas, bombas, tuberías	063
Bancos de pruebas para robineterías y actuadore	065
Proyectos complejos en plantas de ensayo	065
Diagnóstico de máquinas	066

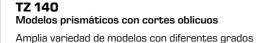
Tecnología de producción

Metrología	068
Herramientas	069
Ensayos tecnológicos	070

Automatización e ingeniería de control de procesos

Componentes: sensores/técnica de medición	070
Componentes: actuadores	072
Componentes: reguladores, sistemas, redes	073
Componentes: principios de neumática e hidráulica	074
Sistemas de calibración modulares	074
Sistemas de control básicos en ingenería de procesos	075
Sistema didáctico modular para la automatización de procesos	078
Robótica y técnica CNC	079
PLC y aplicaciones de PLC	080
Sistemas multivariables	080
Sistemas de control con varias variables controladas	081

Diseño mecánico Dibujo técnico


TZ 110Modelos cilíndricos con cortes paralelos al eje

Amplia variedad de modelos con diferentes grados de dificultad

de dificultad

TZ 100 – TZ 300 forman parte del

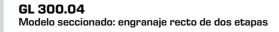
proyecto de aprendizaje GUNT DigiSkills 1.

Además de la consecución de contenidos de dibujo técnico, con GUNT DigiSkills 1 también se desarrollan competencias digitales integrales.

De esta manera, alcanzará la transformación digital necesaria en la Industria 4.0

multimedia via internet

Modelos seccionados: engranajes y elementos de accionamiento



GL 300.03 Modelo seccionado: engranaje recto

GL 300.08 Modelo seccionado: embrague de discos múltiples

GL 300.05 Modelo seccionado: engranaje planetario

Modelos seccionados: componentes de la técnica de refrigeración

ET 499.01 Modelo seccionado: compresor de refrigerante hermético

ET 499.19 Modelo seccionado: válvula de expansión (automática)

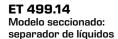
ET 499.02 Modelo seccionado: compresor de refrigerante semihermético

ET 499.03 Modelo seccionado: compresor de refrigerante abierto, dos cil.

ET 499.21 Modelo seccionado: mirilla con indicador de humedad

ET 499.25 Modelo seccionado: válvula reversible de 4 vías

ET 499.12 Modelo seccionado: secador de bloque


ET 499.13 Modelo seccionado: separador de aceite

ET 499.26 Modelo seccionado: regulador de presión de condensación

ET 499.16 Modelo seccionado:

Modelos seccionados: elementos de la construcción de tuberías

HM 700.01 Modelo seccionado: diafragma normalizado

HM 700.02 Modelo seccionado: tobera normalizada

HM 700.03 Modelo seccionado: medidor de Venturi normalizado

HM 700.05 Modelo seccionado: válvula angular

HM 700.14 Modelo seccionado: válvula de seguridad

HM 700.12

HM 700.07 Modelo seccionado: válvula de retención

HM 700.08 Modelo seccionado: válvula de desahogo de presión

HM 700.16 Modelo seccionado: aparatos de medición de presión

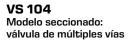
Modelos seccionados: elementos de la construcción de tuberías

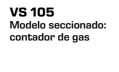
HM 700.20 Modelo seccionado: bomba de émbolo

HM 700.22 Modelo seccionado: bomba de engranajes

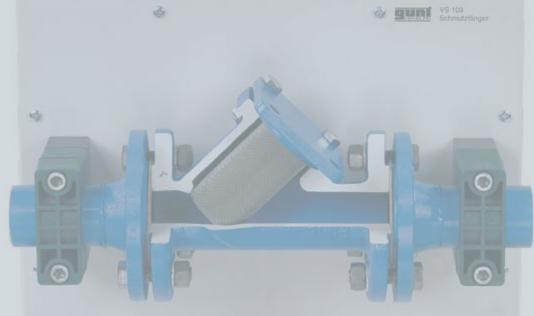
VS 106

VS 102 Modelo seccionado: válvula de compuerta oval plana de cuña




VS 107

VS 109


filtro de malla

Elementos de máquina: sujetadores

MG 100

Kit didáctico: uniones con pasadores

Conocer diversos tipos de pasadores, sus peculiaridades y aplicaciones

MG 110

Kit didáctico: uniones con chavetas

Conocer diversos tipos de chavetas, su fabricación, sus peculiaridades y aplicaciones

MG 120

Kit didáctico: uniones con chavetas inclinadas

Conocer diversos tipos de chavetas inclinadas, su fabricación, sus peculiaridades y aplicaciones

MG 200

Kit didáctico: uniones roscadas y arandelas

Prácticas adecuadas en el taller respecto al tema uniones roscadas, monentos de apriete y de rotura

MG 903

Kit de seguros de tornillos

Denominaciones y términos conforme a la norma, representación gráfica de seguros de tornillo diferentes

MG 901

Kit de tornillos y tuercas

Extensa colección didáctica de los tornillos y las tuercas más importantes utilizados en el maquinado de piezas

MG 905

Kit de pernos: perfiles de roscas

Denominaciones y términos conforme a la norma de tipos de rosca diferentes, determinación del tipo de la rosca con el calibre para roscas

TM 310

Comprobación de roscas

Grados de eficiencia en roscas de distintos materiales y pasos de rosca

TM 320

Comprobación de uniones roscadas

Relación entre el par de apriete y la fuerza de sujeción en tornillos normalizados

Diseño mecánico

Elementos de máquina: rodamientos

MG 911

Kit de rodamientos

Conocimiento de los distintos tipos de rodamientos más importantes y su aplicación específica

Elementos de máquina: elementos de transmisión

GL 100

Principio de los engranajes

Principios básicos de transmisión de correas, ruedas de fricción, engranajes

GL 110 Mecanismo de leva

de mecanismos de leva

Demostración y medición de las curvas de desplazamiento

GL 200

Engranaje para tornos

Estudio claro y sin peligro del funcionamiento de engranajes de

AT 200

Determinar la eficiencia de engranajes

Dispositivo de ensayo para determinar la potencia de accionamiento y frenado mecánica de un engranaje recto o de un engranaje helicoidal

TM 123 Engranaje recto

Funcionamiento y estructura de un engranaje recto

TM 124

Engranaje de tornillo sin fin

Funcionamiento y estructura de un engranaje de tornillo sin fin

TM 125

Torno de cable

Contemplaciones del equilibrio para determinar la transmisión de fuerza y el rendimiento

TM 220 Transmisión por correa y rozamiento de la correa

Ángulo de arrollamiento, coeficiente de fricción y fuerza del cable (fórmula de rozamiento en cables de Eytelwein)

TM 232

Rozamiento en cojinetes

Rozamiento en cojinetes de deslizamiento de diferentes materiales, comparación con el rozamiento en rodamientos

TM 282

Rozamiento en cojinetes de deslizamiento

Estudio experimental de los fundamentos de la lubricación hidrodinámica

Tecnología de montaje **Kits de montaje**

MT 190

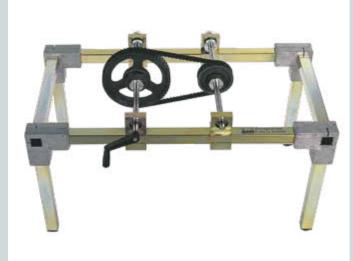
Montaje aparato de ensayo universal

Proyecto de aprendizaje con gran orientación a la práctica para la formación en profesiones metalúrgicas: construcción de un aparato comprobador hidráulico de tracción/compresión

MT 190.01

Montaje adquisición de datos en el aparato de ensayo

Kit de las especialidades "mecánica y electrónica": sistema de adquisición de datos apto para funcionar con el aparato de ensayo universal MT 190


Tecnología de montaje

Elementos de accionamiento y engranajes

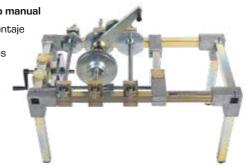
GL 410

Montaje engranajes simples

Prácticas de montaje variadas para accionamientos sencillos con correas, ruedas dentadas y cadenas de rodillos

GL 420

Montaje engranajes combinadas


Prácticas de montaje variadas para accionamientos compuestos

GL 430

Montaje cambio manual

Prácticas de montaje variadas para diversos modelos de engranajes

MT 173

Banco de ensayos para engranajes

Dispositivo de ensayo para determinar la eficiencia mecánica de los diferentes engranajes, control de instalación mediante PLC

MT 174 Planta de clasificación

MT 120

MT 121

Mantenimiento preventivo basado en el ejemplo de un proceso de separación, control de instalación mediante

Tecnología de montaje

Elementos de accionamiento y engranajes

MT 171 Montaje cojinete de deslizamiento hidrodinámico

Comprensión de los componentes y sus funciones; montaje y mantenimiento

MT 110.10

Modelo seccionado: engranaje recto de tornillo sin fin

Modelo seccionado operado manualmente de un engranaje recto de tornillo sin fin

MT 120

Kit de montaje: engranaje recto

Funcionamiento y construcción de un engranaje recto con dentado oblicuo; planificar, montar, desmontar

El material didáctico multimedia via internet

MT 121

Kit de montaje: engranaje cónico

Funcionamiento y construcción de un engranaje cónico; planificar, montar, desmontar

El material didáctico multimedia via internet

Kit de montaje: engranaje planetario

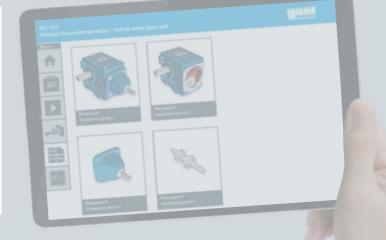
Funcionamiento y construcción de un engranaje planetario; planificar, montar, desmontar

El material didáctico multimedia

Kit de montaje: engranaje recto de tornillo sin fin

Funcionamiento y construcción de un engranaje recto de tornillo sin fin; planificar, montar, desmontar

El material didáctico multimedia


Kit de montaje: bomba de engranajes

Funcionamiento y construcción de una bomba de engranajes; planificar, montar, desmontar

El material didáctico multimedia via internet

Tecnología de montaje Valvulería

MT 154

Kit de montaje: válvula de cierre

Planificar, montar, desmontar: funcionamiento y construcción de una válvula de cierre

MT 156

Kit de montaje: compuerta plana de cuña y válvula de asiento inclinado

Montaje, desmontaje y mantenimiento en robinetería industrial

MT 157

Kit de montaje: chapaleta y válvula de retención

Montaje, desmontaje y mantenimiento en robinetería industrial

MT 158

Kit de montaje: grifo de bola y válvula de cierre

Montaje, desmontaje y mantenimiento en robinetería industrial

MT 101

Kit de montaje: válvula de control con accionamiento neumático

Funcionamiento y construcción de una válvula de control con accionamiento neumático:

El material didáctico multimedia via internet

desmontar

Kit de montaje: válvula de control con accionamiento eléctrico

Funcionamiento y construcción de una válvula de control con accionamiento eléctrico; planificar, montar,

El material didáctico multimedia via internet

desmontar

Banco de pruebas hidráulico para robinetería

Ensayo de presión para los kits de montaje GUNT MT 154, MT 156, MT 157 y MT 158

Tecnología de montaje Compresores

MT 141

Kit de montaje: compresor de émbolo

Funcionamiento y estructura de un compresor de émbolo, planificación, montaje, desmontaje

El material didáctico multimedia via internet

Eficiencia energética en compresores de pistón

Instalación del compresor de pistón montado MT141 para control de funcionamiento; equilibrado de energías

Tecnología de montaje

Tuberías

HL 960

Estación de montaje de tuberías y robineterías

Montaje de tuberías e instalaciones reales; en combinación con HL 960.01: ensayos de

funcionamiento en una red de tuberías

Mantenimiento

Componentes de instalaciones: válvulas, bombas, tuberías

MT 130

Kit de montaje: bomba centrífuga

Funcionamiento y construcción de una bomba centrífuga; planificar, montar, desmontar

MT 181

Montaje y mantenimiento: bomba centrífuga multietapa

Comprensión de la construcción y del funcionamiento de la bomba; planificación y realización del montaje, desmontaje y mantenimiento

MT 182

Montaje y mantenimiento: bomba de tornillo

Comprensión de la construcción y del funcionamiento de la bomba; planificación y realización del montaje, desmontaje y mantenimiento

MT 183

Montaje y mantenimiento: bomba de diafragma

Comprensión de la construcción y del funcionamiento de la bomba; planificación y realización del montaje, desmontaje y mantenimiento

MT 134

Kit de montaje: bomba de émbolo

Funcionamiento y construcción de una bomba de émbolo; planificar,

MT 185

Montaje y mantenimiento: bomba centrífuga en línea

Comprensión de la construcción y del funcionamiento de la bomba; planificación y realización del montaje, desmontaje y mante-

MT 136

Kit de montaje: bomba de engranajes

Funcionamiento y construcción de una bomba de engranajes; planificar, montar, desmontar

Multimedia instructional materials

Mantenimiento

Componentes de instalaciones: válvulas, bombas, tuberías

HL 962

Banco de pruebas para bombas hidráulicas

Unidad básica para el montaje de un sistema de tuberías

Bomba normalizada química

Bomba típica de la ingeniería de procesos

HL 962.02

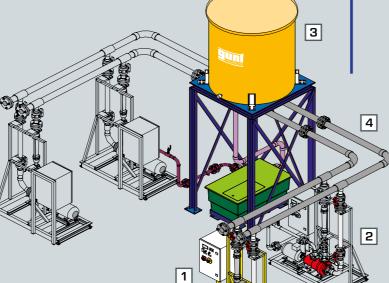
Bomba con motor provisto de diafragma

Bomba centrífuga hermética, particularmente apropiada para el transporte de gases licuados

HL 962.03

etapas

Bomba de canal lateral Bomba centrífuga autocebante de tres



HL 962.04

Bomba normalizada química con acoplamiento magnético

Bomba centrífuga hermética según la norma ISO 5199

Posible combinación de componentes individuales para un equipo de bombas apto para funcionar

- 1 banco de pruebas para bombas hidráulicas (HL 962) 2 bombas de diversos tipos (HL 962.01 a HL 962.04)
- 3 sistema de depósito (HL 962.30)
- 4 sistema de tuberías para unir los distintos componentes de la instalación (HL 962.32)

Mantenimiento

Bancos de pruebas para robineterías y actuadore

RT 396

Banco de pruebas para bombas y robineterías

Registro de las curvas características de robineterías industriales y de una bomba centrífuga

RT 395

Mantenimiento de robineterías y actuadores

Mantenimiento y prueba de funcionamiento: 4 diferentes robineterías y actuadores

Mantenimiento

Proyectos complejos en plantas de ensayo

MT 210

Montaje y mantenimiento: refrigeración

Proyecto de aprendizaje de gran afinidad con la práctica para la formación en profesiones donde se procesa metal o se trabaja con electricidad:

MT 174

Planta de clasificación

Mantenimiento preventivo basado en el ejemplo de un proceso de separación, control de instalación mediante PLC

Mantenimiento

Diagnóstico de máquinas

PT 500 Sistema de diagnóstico de máquinas, unidad básica

Unidad básica para realizar varios ensayos relacionados con el diagnóstico de máquinas, utilizando kits de accesorios modulares

PT 500.10 Kit de árbol elástico

Vibraciones de flexión del árbol elástico

PT 500.11

Kit de árbol con fisura

Comportamiento de vibración del árbol con una grieta radial

PT 500.12

Kit de defectos en rodamientos

Evaluación del estado de los rodamientos a través de un análisis de vibraciones

PT 500.13 Kit de acoplamientos

Análisis de vibraciones

PT 500.14

Kit de transmisión por correa

Vibraciones en transmisiones por correa

PT 500.15 Kit de defectos

en engranajes

Análisis de vibraciones causadas por defectos en engranajes

PT 500.16

Kit de mecanismo de biela y manivela

Vibraciones en mecanismos articulados

PT 500.17

Kit de cavitación en bombas

Observar y medir fenómenos de cavitación

PT 500.18

Kit de vibraciones en soplantes

Identificación de las vibraciones provocadas por los álabes móviles dentro del espectro de vibraciones

PT 500.19

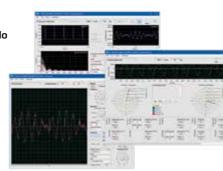
Kit de vibraciones electromecánicas

Interacción del sistema electromagnético - mecánico

PT 500.05

Equipo de frenado y carga

Generación de un momento de carga;


aplicable en diversos ensayos

PT 500.04

Analizador de vibraciones asistido por PC

Compatible con todos los ensayos de diagnóstico de máquinas de la serie PT 500

PT 501

Daños en rodamientos

Estudio de vibraciones de rodamientos

Tecnología de producción **Metrología**

multimedia via internet

PT 102 – PT 109 forman parte del

proyecto de aprendizaje GUNT DigiSkills 2.

Además de la consecución de contenidos de la metrología dimensional, con GUNT DigiSkills 2 también se desarrollan competencias digitales integrales.

De esta manera, alcanzará la transformación digital necesaria en la Industria 4.0

Tecnología de producción **Herramientas**

FT 901 Kit de herramientas para taladrar

Diversas herramientas de taladrar: geometría de herramienta, secciones defectuosas

FT 903

Kit de herramientas para avellanar

Diferentes herramientas de avellanado: denominaciones conforme a la norma

FT 905

Kit de herramientas para escariar

Comprobación de una perforación con ayuda de un calibre macho límite; diversas herramientas para escariar

FT 907

Kit de herramientas para lijar

Colección didáctica de herramientas y abrasivos típicos

FT 909

Kit de herramientas para tornear

Familiarizarse con diversas herramientas (forma, aplicación) y plaquitas de corte reversibles (geometría de corte)

FT 913 Kit de herramientas

para fresar
Conocimiento de

diversos tipos de fresas (forma, aplicación)

Tecnología de producción Ensayos tecnológicos

FT 100

Fuerzas de corte en el taladrado

Medición de la fuerza de avance y el par

FT 102 Fuerzas de corte en el torneado

Medición de las fuerzas efectivas en una herramienta de torno; dinamómetro de tres componentes

FT 200 Conformación por plegado Ensayo de tornillo de banco: deformación permanente de barras planas

Automatización e ingeniería de control de procesos Componentes: sensores/técnica de medición

Calibración de un sensor de presión

Comprobación de presión generada con un manómetro de pistón con pesas

Fundamentos de sensores industriales

Conocer los sensores más importantes: funcionamiento y aplicación

RT 306

Ajuste de los sensores de nivel

Familiarización con los diferentes componentes estándar de la industria con una interfaz de bucle de corriente de 4-20 mA usando el ejemplo de la medición de nivel

WL 202

Fundamentos de la medida de temperatura

Introducción experimental a la medida de temperatura: métodos, aplicaciones, características

FL 100

Sistema didáctico de galgas extensométricas Ensayos de tracción, flexión y torsión con punto de medición para galgas extensométricas y circuito de puente completo

HM 500

Banco de ensayos para caudalímetros

Comparación y calibración de diferentes caudalímetros

Diversos caudalímetros HM 500.01-HM 500.16 están disponibles como accesorios.

Automatización e ingeniería de control de procesos **Componentes: actuadores**

MT 101

Kit de montaje: válvula de control con accionamiento neumático

Funcionamiento y construcción de una válvula de control con accionamiento neumático; planificar, montar, desmontar

El material didáctico multimedia via internet

MT 102

Kit de montaje: válvula de control con accionamiento eléctrico

Funcionamiento y construcción de una válvula de control con accionamiento eléctrico; planificar, montar, desmontar

El material didáctico multimedia via internet

RT 396

Banco de pruebas para bombas y robineterías

Registro de las curvas características de robineterías industriales y de una bomba centrífuga

RT 390

Banco de ensayos para válvulas de control

Estructura y funcionamiento de válvulas de control; determinación del valor Kv

RT 395

Mantenimiento de robineterías y actuadores

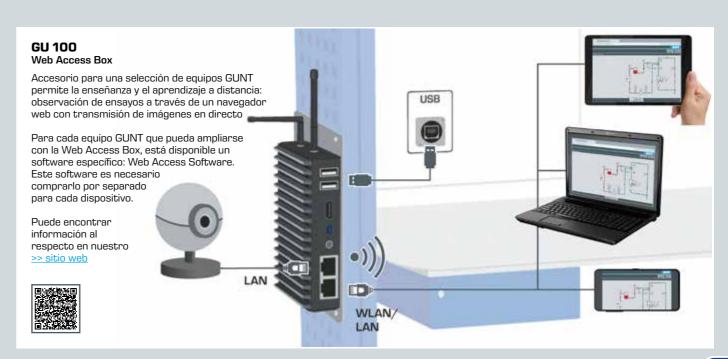
Mantenimiento y prueba de funcionamiento: 4 diferentes robineterías y actuadores

Automatización e ingeniería de control de procesos Componentes: reguladores, sistemas, redes

RT 350

Manejo de reguladores industriales

Simulación de sistemas controlados; regulador digital con parámetros configurables



RT 380

Optimización de circuitos de control

Adaptación del regulador al sistema controlado; simulación vía software de los sistemas controlados más usuales

Automatización e ingeniería de control de procesos Principios de neumática e hidráulica

RT 700

Kit didáctico de fundamentos de hidráulica

Sistema didáctico completo para la introducción experimental a los fundamentos de la hidráulica

RT 701

Kit de equipamiento para electrohidráulica

Kit de electrohidráulica para el sistema didáctico hidráulica RT 700

RT 710 Servosistema hidráulico


Bucle de control hidráulico con condiciones de carga ajustables

RT 770

Kit didáctico de neumática y electroneumática con PLC

Sistema didáctico completo para la introducción experimental a los fundamentos de la neumática y la electroneumática con PLC

Automatización e ingeniería de control de procesos Sistemas de calibración modulares

RT 310

Estación de calibración

Calibración de componentes del circuito de control por medio de una técnica de medida precisa

RT 304

Banco de calibración

Estudio del comportamiento de transmisión de actuadores y transductores

Automatización e ingeniería de control de procesos Sistemas de control básicos en ingenería de procesos

RT 010

Kit didáctico para regulación de nivel, HSI

Fundamentos de la técnica de regulación en el ejemplo de un sistema controlado de nivel con comportamiento integral

RT 030

Kit didáctico para regulación de presión, HSI

Fundamentos de la técnica de regulación en el ejemplo de un sistema controlado de presión con comportamiento PT1

RT 020

Kit didáctico para regulación de caudal, HSI

Fundamentos de la técnica de regulación en el ejemplo de un sistema controlado de caudal rápido

RT 040

Kit didáctico para regulación de temperatura, HSI

Fundamentos de la técnica de regulación en el ejemplo de un sistema controlado de temperatura con comportamiento

de tiempo de retardo

RT 050

Kit didáctico para regulación de número de revoluciones, HSI

Fundamentos de la técnica de regulación en el ejemplo de un sistema controlado de velocidad con comportamiento PT1

Kit didáctico para regulación de posición, HSI

ejemplo de un sistema controlado de posición con comportamiento integral

Automatización e ingeniería de control de procesos Sistemas de control básicos en ingenería de procesos

RT 451 Regulación de nivel

Sistema controlado de nivel sobre la base de los componentes estándar de la industria, sensor de nivel inteligente, control de instalación mediante PLC

RT 453 Regulación de presión

de 1er orden y de 2° orden sobre la base de los componentes estándar de la industria, sensores de presión inteligentes, control de instalación mediante PLC

Regulación de temperatura

RT 454

RT 455

Regulación de pH

Sistema controlado de temperatura sobre la base de los componentes estándar de la industria, regulador configurable como continuo o como conmutador, sensores de temperatura inteligentes, control de instalación mediante PLC

Sistema controlado de caudal sobre la base de los componentes

estándar de la industria, sensor de caudal inteligente,

control de instalación mediante PLC

RT 452

Regulación de caudal

Sistema controlado de pH sobre la base de los componentes estándar de la industria, sensores de pH inteligentes, control de instalación mediante PLC

RT 614

Kit de demostración: regulación de nivel

Introducción experimental a la ingeniería de control en el ejemplo de un sistema controlado de nivel

RT 624

Kit de demostración: regulación de caudal

Introducción experimental a la ingeniería de control en el ejemplo de un sistema controlado de caudal

Kit de demostración: regulación de presión

RT 634

Introducción experimental a la ingeniería de control en el ejemplo de un sistema controlado de presión de 2° ordre

RT 644

Kit de demostración: regulación de temperatura

Introducción experimental a la ingeniería de control en el ejemplo de un sistema controlado de temperatura

RT 674

Kit de demostración: regulación de caudal y nivel

Introducción experimental a la ingeniería de control en el ejemplo de un sistema controlado para caudal, nivel y nivel a través del caudal (regulación en cascada)

Automatización e ingeniería de control de procesos Sistema didáctico modular para la automatización de procesos

del entubado y cableado.

RT 450

Sistema didáctico automatización de procesos: módulo base

Base para el montaje de los diversos ensayos; consta de alimentación eléctrica y suministro de agua con depósito y bomba

RT 450.01 Módulo del sistema controlado: nivel

Junto con otros componentes, construcción de un circuito de control de nivel

RT 450.02

Módulo del sistema controlado: caudal

Junto con otros componentes, construcción de un circuito de control de caudal

RT 450.03 Módulo del sistema controlado: presión

Junto con otros componentes, construcción de un circuito de control de presión

RT 450.04

Módulo del sistema controlado: temperatura

Junto con otros componentes, construcción de un circuito de control de temperatura

Automatización e ingeniería de control de procesos

IA 520

Sistema automatizado de manipulación y fabricación

Dos máquinas CNC, un robot y un cartucho como elementos principales; PLC y software de control de procesos para la supervisión del desarrollo

Automatización e ingeniería de control de procesos

PLC y aplicaciones de PLC

RT 800

Aplicación de PLC: proceso de mezclado

Ensayos sobre el control de procesos de mezcla discontinuos con PLC

IA 130 Módulo PLC

Módulo PLC autónomo para prácticas básicas; también adecuado para IA 210 y RT 800

IA 210 Aplicación de PLC: proceso de manipulación de material Sistema de fundamentos de la técnica de automatización: transporte y clasificación de piezas de trabajo

Automatización e ingeniería de control de procesos **Sistemas multivariables**

RT 682

Regulación multivariable en un depósito de agitación

Depósito de agitación calentado con recuperación de calor como modelo: regulación acoplada de nivel y temperatura

RT 681

Regulación multivariable por desgasificación en vacío

Desgasificación de líquidos como modelo: regulación acoplada de nivel y presión en depósito a vacío

Automatización e ingeniería de control de procesos Sistemas de control con varias variables controladas

RT 586

Regulación de la calidad del agua

Regulación de pH, potencial redox, concentración de oxígeno y conductividad eléctrica

RT 578

Regulación de cuatro variables de la ingeniería de procesos

Regulación de nivel, caudal, presión y temperatura como en una instalación real

RT 580

Sistemas de control y detección de fallos

Regulación de nivel, caudal, temperatura y regulación en cascada; control de instalación y configuración vía panel táctil y PLC

RT 590

Planta de ensayo: ingeniería de control de procesos

Planta de ensayo compleja a escala industrial con un gran espectro de ensayos; regulación de nivel, caudal, presión, temperatura y regulación en cascada, control de instalación mediante PLC

3 | Ingeniería térmica

Fundamentos de la termodinámica

Variables <mark>de estado termodinámicas</mark>	084
Transición de fase	085
Principios de la transferencia de calor	086

Cambiadores de calor

Transferencia de calor	088
Recuperadores	089
Cambiador de calor en contacto directo	091
Transferencia de calor en lecho fluidizado	091

Máquinas fluidomecánicas térmicas

Centrales térmicas de vapor	092
Turbinas de gas	094
Compresores de émbolo	095
Motores de combustión interna	096

Fundamentos de la refrigeración

Principios de la generación de frío	099
Instalación frigorífica de compresión	100
Aplicaciones frigoríficas	100

Aplicaciones termodinámicas en la ingeniería de suministro

Calentamiento de agua	101
Ingeniería climática y técnica de ventilación	103
GUNT RHLine Renewable Heat	104

Calefacción

Ensayos básicos de la técnica de calefacción – paneles de prácticas	105
Calefacción doméstica	106

Instalaciones sanitarias

Ingeniería térmica

Fundamentos de la termodinámica Variables de estado termodinámicas

WL 201

Fundamentos de la medida de humedad del aire

Cámara climática con humedad regulable; comparación de cuatro métodos de medición

WL 203 Fundamentos de la medida de presión Medición de la sobrepresión y depresión con diferentes aparatos de medición

WL 202 Fundamentos de la medida de temperatura

Introducción experimental a la medida de temperatura: métodos, aplicaciones, características

WL 103 Expansión de gases ideales

Determinación del exponente adiabático según Clément-Desormes

WL 102 Cambio de estado de los gases

Cambio isotérmico e isocórico del estado del aire

WL 920

Medida de temperatura

Estudio de un comportamiento de temperatura no estacionario, así como de saltos de temperatura definidos

Fundamentos de la termodinámica Transición de fase

WL 210

Proceso de evaporación

Diferentes formas de ebullición en un tubo calentado exteriormente

WL 204

Presión de vapor del agua

Medición de presión y temperatura en una caldera de vapor

WL 220 Proceso de ebullición

Visualización de diversos regímenes de ebullición en un depósito a presión transparente

WL 230 Proceso de condensación

Medición de la transferencia de calor en condensación en gotas y condensación en película

WL 205

Curva de vapor de agua

Medición de presión y temperatura en una caldera de vapor, evaluación de ensayos basadas en software

Fundamentos de la termodinámica Principios de la transferencia de calor

WL 362

Transferencia de energía a través de radiación

Estudio de la radiación térmica y luminosa; radiador térmico y termopila para el estudio de la radiación térmica

WL 377 Convección y radiación

Transferencia de calor entre el elemento calefactor y la pared del depósito por convección y radiación

WL 460

Transferencia de calor por radiación

Influencia de las diversas superficies en la transferencia de calor

WL 440

Convección libre y forzada

Cálculo de transferencias de calor convectivas en diferentes formas geométricas: placa plana, cilindro, haz de tubos

WL 430

Conducción de calor y convección

Análisis de la conducción de calor y la convección utilizando una aleta refrigeradora como ejemplo

WL 372

Conducción de calor radial y lineal

Estudio de la conducción de calor en cuerpos sólidos

WL 420

Conducción de calor en metales

Análisis de la conductividad térmica de diferentes metales

WL 422

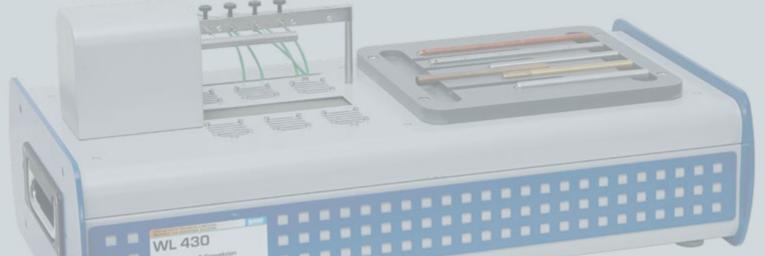
Conducción de calor en fluidos

Determinación del coeficiente de conductividad térmica en fluidos líquidos y gaseosos

WL 900

Conducción de calor en estado estacionario y no estacionario

Conducción de calor lineal en muestras metálicas; distribución de la temperatura



WL 376

Conductividad térmica de materiales para construcción

Estudio de las propiedades aislantes de típicos materiales de construcción

Cambiadores de calor Transferencia de calor

WL 314

Transferencia de calor convectiva de flujo de aire

Transferencia de calor convectiva en cambiadores de calor con diferentes geometrías

WL 314.01

Transferencia de calor en los tubos de flujo paralelo

La transferencia de calor de la pared del tubo al medio fluyente

WL 314.02

Transferencia de calor en los tubos de flujo mixto

Transferencia de calor en un cambiador de calor de haz de tubos con flujos cruzados

WL 314.03

Transferencia de calor en el tubo

Cambiador de calor de tubo, transferencia de calor en el tubo interior

Cambiadores de calor Recuperadores

WL 110

Unidad de alimentación para cambiadores de calor

Medición de las propiedades de transferencia de cinco diferentes modelos de cambiadores de calor, control de instalación mediante PLC

WL 110.01

Cambiador de calor de tubos concéntricos

Cambiador de calor transparente con un punto de medición de temperatura adicional en la mitad del tramo de ensayos; funcionamiento con

o flujos a contraco-

WL 110.02

Cambiador de calor de placas

Cambiador de calor de placas típico con funcionamiento con flujos paralelos o flujos a contracorriente

WL 110.03

Cambiador de calor de carcasa y tubos

Cambiador de calor transparente con funcionamiento con flujos paralelos cruzados o flujos a contracorriente cruzados

WL 110.04

Depósito de agitación con doble camisa y serpentín

Calentamiento por camisa o por serpentín; mecanismo de agitación para mezclar mejor el fluido

WL 110.05

Cambiador de calor de tubos de aletas Transferencia de calor

entre el agua y el aire; funcionamiento de flujo cruzado

WL 308 Transferencia de calor en el flujo en tuberías

Cambiador de calor con medición de la temperatura del fluido y de la pared; funcionamiento con flujos paralelos y flujos a contracorriente

Cambiadores de calor **Recuperadores**

WL 302

Transferencia de calor en el cambiador de calor de tubos concéntricos

Transferencia de calor en flujos de tubo y determinación del flujo térmico; modo de flujo paralelo y de flujo a contracorriente

WL 315.01

Cambiador de calor de carcasa y tubos vapor-agua

Proceso de transferencia de calor entre vapor y agua, determinar flujos térmicos de vapor y agua

ET 300

Cambiador de calor de tubos de aletas agua/aire

Funcionamiento del cambiador de calor como calentador de aire o refrigerador de agua

WL 312 Transferer

Transferencia de calor en el flujo de aire

Transferencia de calor por convección en cambiadores de calor de carcasa y tubos y de tubos de aletas

WL 315C

Comparación entre diferentes cambiadores de calor

Comparación de cambiador de calor de placas, cambiador de calor de tubos concéntricos, cambiador de calor de carcasa y tubos, cambiador de calor de tubos de aletas y depósito de agitación con doble camisa y serpentín

Cambiadores de calor Cambiador de calor en contacto directo

WL 320

Torre de refrigeración por vía húmeda

Modo de acción y parámetros de una torre de refrigeración por vía húmeda con ventilación forzada

WL 320.01 - WL 320.04

Columnas de refrigeración, tipo 2 - tipo 5

Columnas de refrigeración con diferentes superficies de humectación

Cambiadores de calor

Transferencia de calor en lecho fluidizado

WL 225

Transferencia de calor en lecho fluidizado

Transferencia de calor de un elemento calefactor a un lecho fluidizado

Máquinas fluidomecánicas térmicas Centrales térmicas de vapor

ET 860

Dispositivos de seguridad en calderas de vapor

Conocimiento de dispositivos de seguridad de la caldera como presostatos y detectores del nivel de agua

ET 810

Central térmica de vapor con máquina de vapor

Máquina de vapor de émbolo de uno cilindro con caldera calentada por gas para generar vapor

ET 813

Máquina de vapor de dos cilindros

Máquina de vapor de efecto simple con condensación; determinación de la potencia mecánica y el rendimiento

HM 365

Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

Planta de ensayo con máquina de vapor de dos cilindros ET 813, generador de vapor ET 813.01 y

ET 850

Generador de vapor

Generador de vapor calentado por gas a escala de laboratorio para vapor húmedo o vapor sobrecalentado; condensador integrado

ET 851

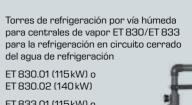
Turbina de vapor axial

Turbina de vapor de una etapa con medición de potencia; suministro de vapor vía ET 850, calentado por gas o ET 852, eléctrico

ET 852 Generador de vapor eléctrico

Generador de vapor eléctrico a escala de laboratorio para vapor sobrecalentado; condensador integrado; alternativa al generador de vapor calentado por gas ET 850 para la alimentación de la turbina de vapor ET 851

ET 805.50


Determinación del contenido de vapor

Determinación del contenido de vapor a través de un calorímetro separador con separador ciclónico o un calorímetro estrangulador con expansión de vapor

Central térmica de vapor 1,5 kW

Caldera de vapor calentada por aceite, turbina industrial pequeña de una sola etapa, condensador y tratamiento del agua de alimentación; supervisión vía PLC

ET 833.01 (115kW) o ET 833.02 (140kW)

ET 833

ET 830

Central térmica de vapor 1,5kW con sistema de control de procesos

Planta de turbina de vapor como ET 830, adicionalmente con supervisión y control vía sala de mando con pantalla táctil

ET 805

Central térmica de vapor de 20kW con sistema de control de proceso

Turbina de vapor con alternador síncrono para funcionamiento en red o en isla; completamente equipado con caldera de vapor calentada por aceite/gas, condensador, torre de refrigeración y tratamiento del agua de alimentación; dispositivo de sincronización

Máquinas fluidomecánicas térmicas **Turbinas de gas**

ET 792

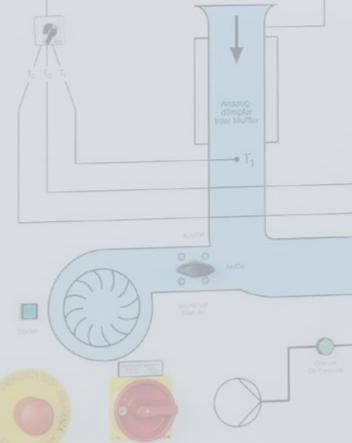
Turbina de gas

Funcionamiento con turbina de potencia o como motor a reacción con tobera de empuje; funcionamiento con gas licuado

ET 796

Turbina de gas como motor a reacción

Turbina de gas pequeña de un solo eje con medición del empuje; funcionamiento con queroseno o petróleo



ET 794

Turbina de gas con turbina de potencia

Disposición de eje doble con turbina de alta presión y turbina de potencia; funcionamiento con gas licuado

guni

Máquinas fluidomecánicas térmicas Compresores de émbolo

ET 500

Compresor de émbolo de dos etapas

Registro de la curva característica de un compresor industrial de dos etapas, control de instalación mediante PLC

ET 508

Simulador de un compresor de aire de dos etapas

Funcionamiento simulado de una instalación de compresor de dos etapas con refrigeración intermedia y posterior

ET 513

Compresor de émbolo de una etapa

Estudios en un compresor de aire con determinación de la potencia mecánica absorbida

HM 365

Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

ET 512

Instalación de generación de aire comprimido con compresor de émbolo

Prueba de funcionamiento en un compresor de émbolo de una etapa

ET 432

Comportamiento de un compresor de émbolo

Estudios en un compreso de émbolo de dos cilindros de la refrigeración, abierto

Máquinas fluidomecánicas térmicas Motores de combustión interna

Banco de ensayos modular para motores de un cilindro con CT 159, motor de prueba CT 151 y unidad de frenado HM 365

CT 159

Banco de pruebas modular para motores de un cilindro, 3kW

Alojamiento del motor y alimentación con combustible y aire; medición de los datos característicos del motor

HM 365 Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

CT 150

Motor de gasolina de cuatro tiempos para CT 159

Motor Otto de cuatro tiempos de válvulas en cabeza refrigerado por aire

CT 151

Motor diésel de cuatro tiempos para CT 159

Motor diésel de cuatro tiempos con inyección directa refrigerado por aire

CT 153

Motor de gasolina de dos tiempos para CT 159

Motor Otto de dos tiempos refrigerado por aire

CT 110

Banco de pruebas para motores de un cilindro, 7,5 kW

Unidad de mando y de carga, alimentación con combustible y aire; medición de los datos característicos del motor

CT 100.22

Motor diésel de cuatro tiempos para CT110

Motor diésel de cuatro tiempos con inyección directa refrigerado por aire

CT 100.20

Motor de gasolina de cuatro tiempos para CT 110

Motor Otto de cuatro tiempos, refrigerado por aire, con preparación externa de la mezcla

CT 100.21

Motor de gasolina de dos tiempos para CT 110

Motor Otto de dos tiempos, refrigerado por aire, con barrido invertido

CT 100.23

refrigerado por agua, para CT 110

Motor diésel de cuatro tiempos con cámara de turbulencia refrigerado por agua

Máquinas fluidomecánicas térmicas Motores de combustión interna

CT 300

Banco de pruebas para motores, 11kW

Banco de pruebas para motores industriales de dos cilindros

CT 300.04

Motor de dos cilindros de gasolina para CT 300

Motor de gasolina de cuatro tiempos, refrigerado por aire, con preparación externa de la mezcla

CT 300.05

Motor de dos cilindros diésel para CT 300

Motor diésel de cuatro tiempos con inyección indirecta refrigerado por agua

Unidad de carga, 75kW para motores de cuatro cilindros

Unidad de carga con freno de corrientes parásitas refrigerado por aire e instrumentación

CT 400.01

Motor de gasolina de cuatro cilindros para CT 400

Motor Otto con catalizador regulado, máx. 75 kW

CT 400.02 Motor diésel

de cuatro cilindros para CT 400

Motor diésel con inyección directa, máx. 41kW

Fundamentos de la refrigeración Principios de la generación de frío

ET 400

Circuito de refrigeración con carga variable

Instalación frigorífica de compresión con evaporador cargado de agua

ET 352

Compresor de chorro de vapor en la refrigeración

Generación de frío con ayuda de energía térmica; un condensador y un evaporador transparente permiten ver los procesos internos

ET 120

Refrigeración con ayuda del efecto Peltier

Demostración

del efecto termoeléctrico

ET 122 Generador de

frío vortex

Generación de calor y frío con ayuda de aire comprimido

ET 360

Circuito de refrigeración con propano

Investigar el comportamiento de la carga estacionario y no estacionario. Visualización dinámica del caudal másico de refrigerante y del diagrama log p-h en tiempo real

Instalación frigorífica termoaccionada sin compresor; alternativamente calentada por gas o por electricidad

Fundamentos de la refrigeración Instalación frigorífica de compresión

ET 350

Cambios de estado en el circuito de refrigeración

Evaluaciones energéticas del ciclo frigorífico; componentes transparentes permiten ver los cambios de estado

ET 102

Bomba de calor

Aprovechamiento del calor ambiental para el calentamiento del agua

Fundamentos de la refrigeración Aplicaciones frigoríficas

ET 915.01 Modelo refrigerador

Modelo sencillo de un refrigerador doméstico para la conexión al ET 915

congelación

Conexión en paralelo o en serie de evaporadores; conexión al ET 915

ET 915

Sistema de prácticas HSI – refrigeración e ingeniería climática, unidad básica

Entorno de aprendizaje moderno gracias a la integración de hardware/ software (HSI, según sus siglas en ingles)

ET 915.02

Modelo instalación frigorífica con etapa de refrigeración y

Sistema de prácticas HSI para la refrigeración con ET 915 y ET 915.02

Aplicaciones termodinámicas en la ingeniería de suministro Calentamiento de agua

HL 352

Banco de pruebas para quemadores de fuel, de gas natural y de gas propano

Construcción y comportamiento funcional de una caldera con acumulador de agua caliente

ET 202

Fundamentos de la energía térmica solar

Determinación de los parámetros característicos de una planta térmica solar; modelo con fuente de radiación artificial

ET 262

Sonda geotérmica con principio heatpipe

Componentes transparentes permiten observar el cambio de estado del medio portador de calor

ET 202.01

Colector cilindro parabólico

Funcionamiento y comportamiento operativo de un colector cilindro-parabólico, accesorio para

ET 202

HL 313

Calentamiento de agua sanitaria con colector plano

Transformación de la energía de radiación solar en calor y almacenamiento del calor, operar el regulador solar a través del navegador web

Colector de cilindro parabólico con seguimiento del sol

Función y comportamiento de funcionamiento de un colector cilíndrico parabólico, seguimiento solar astronómico y basado en sensores, control de instalación mediante PLC

HL 314

Calentamiento de agua sanitaria con colector tubular

Familiarizarse con el funcionamiento del colector tubular de vacío y el circuito solar, operar el regulador solar a través del navegador web

Aplicaciones termodinámicas en la ingeniería de suministro Calentamiento de agua

ET 102 Bomba de calor

Aprovechamiento del calor ambiental para el calentamiento del agua

ET 405

Bomba de calor para modo de refrigeración y de calefacción

Bomba de calor con diversos cambiadores de calor para aire y agua

ET 264

Utilización de la geotermia con sistema de dos pozos

Utilización de la geotermia en circuito abierto sin repercusión térmica

ET 420

Acumuladores de hielo en la refrigeración

Instalación frigorífica industrial con acumulador de hielo, torre de refrigeración en seco y torre de refrigeración por vía húmeda

Aplicaciones termodinámicas en la ingeniería de suministro Ingeniería climática y técnica de ventilación

ET 915.06

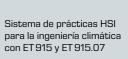
Modelo instalación de aire acondicionado sencilla

Modelo de una instalación de aire acondicionado sencilla para la refrigeración de locales;

ET 915.07

Modelo de climatización

Modelo de una instalación de aire acondicionado completa que funciona con aire exterior y aire de circulación; conexión a ET 915


ET 915

conexión al ET 915

Sistema de prácticas HSI – refrigeración e ingeniería climática, unidad básica

Entorno de aprendizaje moderno gracias a la integración de hardware/ software (HSI, según sus siglas en ingles)

ET 605

Modelo de una instalación de aire acondicionado

Cámara climática con fuente de calor latente y sensible como carga de refrigeración, servicio con aire de circulación y con aire exterior

HL 720

Instalación de ventilación

Montaje y funcionamiento de una instalación de ventilación; medición del desarrollo de la presión dentro de la instalación de ventilación

ET 620

Instalación de aire acondicionado y ventilación

Servicio manual o automático posible mediante PLC; utilización de componentes reales

Aplicaciones termodinámicas en la ingeniería de suministro **GUNT RHLine Renewable Heat**

HL 320.01 Bomba de calor

Bomba de calor para el funcionamiento con diferentes fuentes, operar el regulador de calefacción a través de pantalla táctil o navegador web

HL 320.02

Calefacción convencional

Calefacción adicional eléctrica para el sistema modular HL 320

HL 320.03

Colector plano

Colector plano orientable para la transformación de energía solar en calor

HL 320.04

Colector tubular de vacío

Transformación de energía solar en calor en el colector tubular de vacío

HL 320.05

Módulo de acumulación central con regulador

Módulo con acumulador intermedio y acumulador bivalente para sistemas de calefacción con energías renovables, operar el regulador de calefacción a través de pantalla táctil o navegador web

HL 320.07

Calefacción de suelo/absorbedor geotérmico

Aprovechamiento posible como disipador de calor o fuente de calor

HL 320.08

Calefacción soplante/cambiador de calor de aire

Aprovechamiento posible como disipador de calor o fuente de calor

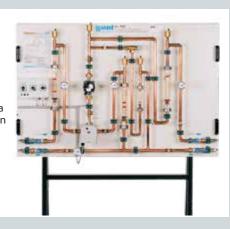
111111

Calefacción

Ensayos básicos de la técnica de calefacción — paneles de prácticas

HL 101

Panel de prácticas de dilatación térmica


Estudio de la dilatación térmica de differentes secciones de tubo (PVC, PE, Cu, acero)

HL 105

Panel de prácticas con válvula mezcladora de tres vías

Influencia de la relación de mezcla en la temperatura de agua de ida y de circulación

HL 104

Panel de prácticas de medida de temperatura

Comparación de cuatro diferentes métodos de medición de temperatura

HL 106

Panel de prácticas con válvula mezcladora de cuatro vías

Influencia de la relación de mezcla en la temperatura de agua de ida y de circulación

HL 107 Panel de prácticas

con bombas de circulación

Dos bombas en conexiones en serie y en paralelo

HL 110

Panel de prácticas con vaso de expansión

Volumen desplazado en una cámara de expansión en función de la presión

HL 109

Panel de prácticas con dispositivos de seguridad

Funcionamiento de dispositivos de seguridad contra sobrepresión y sobretemperatura

<mark>04</mark> 10

Calefacción

Ensayos básicos de la técnica de calefacción – paneles de prácticas

HL 112 Panel de prácticas con radiadores

Manejo de un sistema de calefacción por agua caliente

HL 108 Panel de prácticas de calefacción

Modelo de una instalación de calefacción central con radiadores, bomba de circulación y válvula mezcladora de cuatro vías

Calefacción Calefacción doméstica

HL 620

Panel didáctico sobre regulación de calefacción

Manejo de un regulador de calefacción moderno

HL 360

Equipo de demostración con depósito de fuel

Estudio de dispositivos de protección de depósitos y su función

HL 350

Banco de ensayos para quemador de fuel

Caldera de calefacción con mirilla para observación de la llama

HL 351

Sistema de demostración caldera de calefacción

Caldera de calefacción con quemador de fuel; generador de agua caliente para otros equipos de la serie HL

HL 353

Calentamiento de agua

HL 860

Analizador de humos

Analizador de manejo sencillo

HL 353.02

Distribución de calor y regulación en sistemas de calefacción

Dos circuitos de calefacción independientes el uno del otro con equipos de regulación: circuito de calefacción con un solo subcircuito y con dos subcircuitos

HL 353.01

Comparación de calefacciones de locales

Dos circuitos de calefacción independientes el uno del otro: calefacción de suelo o calentador de aire con soplante y dos radiadores

HL 300

Equipo de demostración de calefacción Función y comportamiento de servicio de una instalación de agua

caliente de calefacción con regulador de calefacción digital

HL 392C

Dispositivos de seguridad de calefacción

Función y comportamiento de válvula de seguridad, limitador de presión de seguridad, regulador de temperatura, conmutador de flujo y otros mas

Calefacción

Calefacción doméstica

HL 510

Panel didáctico sobre instalaciones domésticas del gas

Simulación de fugas en tuberías

HL 500

Calentador de gas instantáneo

Métodos para ajuste del quemador de gas; simulación de

HL 358 Panel de prácticas

con quemador de gas de tiro forzado

Ajuste de la carga nominal y análisis de averías de un quemador de gas; operación sin peligro gracias al servicio con aire

Modelo funcional quemador de gas

Simulación electrónica del funcionamiento de un quemador de gas de tiro forzado

HL 530

Panel de demostración funcionamiento de aparatos a gas

Funcionamiento de una típica caldera mixta; circuitos separados para calefacción de locales y calentamiento de agua sanitaria

Instalaciones sanitarias

ST 210

Panel de medida para instalaciones sanitarias

Estudio del funcionamiento y comportamiento operativo: grifos mezcladores bimando, válvula de descarga

ST 330

Panel de prácticas de protección de agua potable

Seguridad e higiene de tuberías de agua potable

ST 320

Panel de demostración limpieza de tuberías

Limpieza de tuberías conforme a la norma DIN 1988, posibilidad de introducir suciedad

ST 310

Sistema de demostración de agua potable

Instalación de agua potable doméstica con todos los componentes habituales

ST 510

Sistema de demostración de instalaciones de desagüe

Demostración de aspectos esenciales del saneamiento de aguas residuales; un sistema de tuberías transparente permite ver las condiciones . de flujo

Enseñanza práctica de la ingeniería –

con las funciones SMART de GUNT

3a | Refrigeración e ingeniería climática

Refrigeración

Principios de la refrigeración • principios de la generación de frío	112
instalación frigorífica de compresión	113
sistemas de prácticas	114
Termodinámica del ciclo frigorífico	116
Componentes de la refrigeración	
▶ compresores	117
evaporadores y condensadores	118
reguladores primarios y secundarios	118
▶ tuberías	119
montaje, localización de fallos, mantenimiento	119
▶ modelos se <mark>ccionados</mark>	120
Bombas de calor y acumuladores de hielo	122
Refrigeración solar	123

Ingeniería climática

Estados del aire	124
Fundamentos de la ingeniería climática	124
Sistemas de aire acondicionado orientados a la práctica	126
Técnica de ventilación	127

Electrotecnia en la refrigeración e ingeniería climática

Controles de la refrigeración	130
Regulación de instalaciones frigoríficas	130
Localización de fallos	131

Principios de la refrigeración: principios de la generación de frío

ET 101

Circuito de refrigeración por compresión sencillo

Enfriamiento y calentamiento de los cambiadores de calor directamente palpable

ET 120 Refrigeración con ayuda del efecto Peltier

Demostración del efecto termoeléctrico

ET 122 Generador de frío vortex

Generación de calor y frío con ayuda de aire comprimido

ET 480 Instalación frigorífica de absorción

Instalación frigorífica termoaccionada sin compresor; alternativamente calentada por gas o por electricidad

ET 352

Compresor de chorro de vapor en la refrigeración

Generación de frío con ayuda de energía térmica; un condensador y un evaporador transparente permiten ver los procesos internos

ET 360

Circuito de refrigeración con propano

Investigar el comportamiento de la carga estacionario y no estacionario. Visualización dinámica del caudal másico de refrigerante y del diagrama log p-h en tiempo real

Refrigeración

Principios de la refrigeración: instalación frigorífica de compresión

ET 411C

Instalación frigorífica de compresión

Comparación de diferentes elementos de expansión; influencia de un sobrellenado o subllenado de la instalación con refrigerante

ET 400

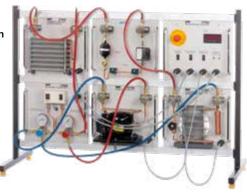
Circuito de refrigeración con carga variable

Instalación frigorífica de compresión con evaporador cargado de agua

ET 350

Cambios de estado en el circuito de refrigeración

Evaluaciones energéticas del ciclo frigorífico; componentes transparentes permiten ver los cambios de estado



Principios de la refrigeración: sistemas de prácticas

ET 900 Introducción a

la refrigeración

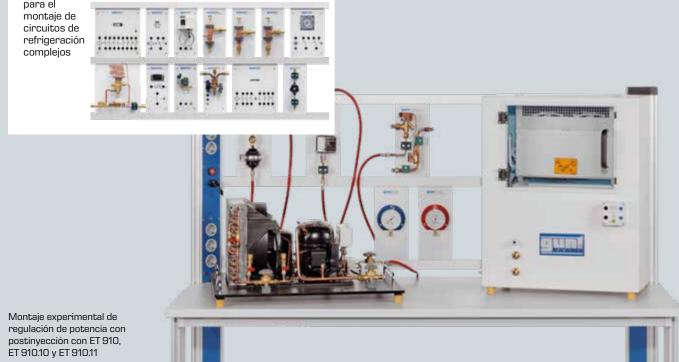
Sistema de ejercicios con módulos intercambiables

ET 910

Sistema de prácticas refrigeración, unidad básica

Montaje de diferentes circuitos de refrigeración utilizando juegos de componentes modulares; contiene cámara de refrigeración y juego de condensación

ET 910.10


Componentes de la refrigeración para ensayos básicos

Accesorios para el montaje de circuitos de refrigeración simples

Componentes de la refrigeración para ensayos avanzados

Accesorios para el montaje de circuitos de refrigeración complejos

ET 915.01

Modelo refrigerador

Modelo sencillo de un refrigerador doméstico para la conexión al ET 915

Sistema de prácticas HSI – refrigeración e ingeniería climática, unidad básica

Entorno de aprendizaje moderno gracias a la integración de hardware/software (HSI, según sus siglas en ingles)

Modelo instalación frigorífica con etapa de refrigeración

Conexión en paralelo o en serie de evaporadores; conexión al ET 915

Termodinámica del ciclo frigorífico

ET 441

Cámara de refrigeración y métodos de descongelación

Estudios de climatización en cámaras de refrigeración y congelación; formación de escarcha y calefacciones de descongelación en el evaporador

ET 351C

Termodinámica del circuito de refrigeración

Instalación frigorífica de compresión para estudios termodinámicos; medición de la potencia mecánica del compresor

ET 430

Instalación frigorífica con compresión de dos etapas

Instalación frigorífica de baja temperatura; compresión con refrigerador intermedio de inyección y subenfriamiento adicional del refrigerante

ET 380

Circuito frigorífico: instalación frigorífica y bomba de calor

Transiciones de fase visibles en el evaporador y el condensador, diagrama log p-h en tiempo real

ET 412C

Instalación frigorífica con cámara de refrigeración y de congelación

Simulación de 18 fallos eléctricos e hidráulicos

Refrigeración

Componentes de la refrigeración: compresores

ET 165

Instalación frigorífica con compresor abierto

Medición de potencia en un compresor abierto con número de revoluciones variable; cámara de refrigeración con carga de refrigeración regulable

HM 365

Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

ET 432

Compresor de émbolo en refrigeración

Estudios en un compresor de émbolo de dos cilindros de la refrigeración, abierto

FT 428

Eficiencia energética en instalaciones frigoríficas

Instalación frigorífica con tres compresores funcionando en conjunto; adaptación a la potencia necesaria

Componentes de la refrigeración: evaporadores y condensadores

ET 431

Cambiadores de calor en el circuito de refrigeración

Propiedades de diferentes cambiadores de calor; influencias del sobrecalentamiento y subenfriamiento

ET 405

Bomba de calor para modo de refrigeración y de calefacción

Bomba de calor con diversos cambiadores de calor para aire y agua

Refrigeración

Componentes de la refrigeración: reguladores primarios y secundarios

ET 182

Reguladores secundarios en instalaciones frigoríficas

Demostración del modo de funcionamiento de los diversos reguladores secundarios en el circuito de refrigeración

ET 180

Presostatos en la refrigeración

Dispositivo de seguridad contra sobrepresión y depresión en el circuito de refrigeración; indicación de los estados de conmutación vía lámparas

ET 426

Regulación de potencia en instalaciones frigoríficas

Estudio de diferentes métodos de regulación de potencia

Refrigeración

Componentes de la refrigeración: tuberías

ET 460

Retorno del aceite en instalaciones frigoríficas

Transporte de lubricantes solubles en el refrigerante en instalaciones frigoríficas; tuberías transparentes

Refrigeración

Componentes de la refrigeración: montaje, localización de fallos, mantenimiento

MT 210

Montaje y mantenimiento: refrigeración

Proyecto de aprendizaje de gran afinidad con la práctica para la formación en profesiones donde se procesa metal o se trabaja con electricidad: montaje de una instalación frigorífica de componentes

ET 192

Cambio de componentes de una instalación frigorífica

Prácticas de mantenimiento y reparación: cambio de compresor, presostato, filtro/secador, válvula electromagnética y válvula de expansión

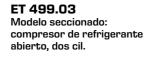
FT 422

Regulación de potencia y fallos en instalaciones frigoríficas

Estudio de diferentes métodos de regulación de potencia; simulación de fallos

Componentes de la refrigeración: modelos seccionados

ET 499.01 Modelo seccionado: compresor de refrigerante hermético



ET 499.19 Modelo seccionado: válvula de expansión (automática)

ET 499.02 Modelo seccionado: compresor de refrigerante semihermético

ET 499.21 Modelo seccionado: mirilla con indicador de humedad

ET 499.18

(termostática)

Modelo seccionado:

válvula de expansión

ET 499.25 Modelo seccionado: válvula reversible de 4 vías

ET 499.12 Modelo seccionado: secador de bloque

ET 499.13 Modelo seccionado: separador de aceite

ET 499.26 Modelo seccionado: regulador de presión de condensación

ET 499.16 Modelo seccionado:

Bombas de calor y acumuladores de hielo

ET 102

Bomba de calor

Aprovechamiento del calor ambiental para el calentamiento del agua

ET 40!

Bomba de calor para modo de refrigeración y de calefacción

Bomba de calor con diversos cambiadores de calor para aire y agua

ET 420

Acumuladores de hielo en la refrigeración

Instalación frigorífica industrial con acumulador de hielo, torre de refrigeración en seco y torre de refrigeración por vía húmeda

HL 320.01

Bomba de calor

Bomba de calor para el funcionamiento con diferentes fuentes, operar el regulador de calefacción a través de pantalla táctil o navegador web

HL 320.07

Calefacción de suelo/ absorbedor geotérmico

Aprovechamiento posible como disipador de calor o fuente de calor

HL 320.08

Calefacción soplante / cambiador de calor de aire

Aprovechamiento posible como disipador de calor o fuente de calor

Refrigeración solar

ET 256

Refrigeración con energía fotovoltaica

Instalación frigorífica de compresión para el funcionamiento con energía eléctrica solar de ET 250

de luz artificial opcional HL 313.01 y módulos solares ET 250

ET 256 junto con la fuente

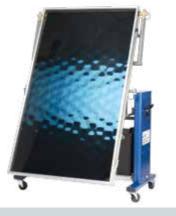
ET 352.01

Refrigeración solar térmica

Funcionamiento térmico solar de un compresor de chorro de vapor

ET 352

Compresor de chorro de vapor en la refrigeración


Generación de frío con ayuda de energía térmica; un condensador y un evaporador transparente permiten ver los procesos internos

HL 313

Calentamiento de agua sanitaria con colector plano

Transformación de la energía de radiación solar en calor y almacenamiento del calor, operar el regulador solar a través del navegador web

HL 314

Calentamiento de agua sanitaria con colector tubular

Familiarizarse con el funcionamiento del colector tubular de vacío y el circuito solar, operar el regulador solar a través del navegador web

ET 480

Instalación frigorífica de absorción

Instalación frigorífica termoaccionada sin compresor; alternativamente calentada por gas o por electricidad

In Es

Ingeniería climática **Estados del aire**

WL 320 Torre de refrigeración por vía húmeda

Modo de acción y parámetros de una torre de refrigeración por vía húmeda con ventilación forzada

WL 320.01 - WL 320.04 Columnas de refrigeración,

Columnas de refrigeración con diferentes superficies de humectación

tipo 2 - tipo 5

WL 201

Fundamentos de la medida de humedad del aire

Cámara climática con humedad regulable; comparación de cuatro métodos de medición

Ingeniería climática

Fundamentos de la ingeniería climática

ET 605

Modelo de una instalación de aire acondicionado

Cámara climática con fuente de calor latente y sensible como carga de refrigeración, servicio con aire de circulación y con aire exterior

ET 915

Sistema de prácticas HSI – refrigeración e ingeniería climática, unidad básica

Entorno de aprendizaje moderno gracias a la integración de hardware/software (HSI, según sus siglas en ingles)

ET 915.06

Modelo instalación de aire acondicionado sencilla

Modelo de una instalación de aire acondicionado sencilla para la refrigeración de locales; conexión al ET 915

ET 915.07

Modelo de climatización

Modelo de una instalación de aire acondicionado completa que funciona con aire exterior y aire de circulación; conexión a ET 915

Sistema de prácticas HSI para la ingeniería climática con ET 915 y ET 915.07

Ingeniería climática

Sistemas de aire acondicionado orientados a la práctica

ET 611

Instalación de aire acondicionado con cámara

Cámara para estudios de zonas de bienestar, apropiada para la estancia de personas; con enfriador de agua y humectador de vapor

ET 600

Acondicionamiento de aire ambiente

Instalación de aire acondicionado de componentes industriales con evaporador directo y humectador de vapor

ET 630

Acondicionador de aire de dos bloques

Acondicionador de aire moderno con función de bomba de calor: enfriar y calentar

T 450

Sistema de aire acondicionado para vehículos

Sistema de aire acondicionado para el enfriamiento del habitáculo del vehículo; utilización de componentes típicos de la industria automovilística

ET 620

Instalación de aire acondicionado y ventilación

Servicio manual o automático posible mediante PLC; utilización de componentes reales

Ingeniería climática **Técnica de ventilación**

HM 280

Ensayos en un soplante radial

Comportamiento de funcionamiento y características de un soplante radial; dos rotores intercambiables

HM 282

Ensayos en un soplante axial

Comportamiento de funcionamiento y características de un soplante axial

HM 210

Variables características de un soplante radial

Determinación del caudala a través de un diafragma de iris o un tubo de Venturi

HL 720

Instalación de ventilación

Montaje y funcionamiento de una instalación de ventilación; medición del desarrollo de la presión dentro de la instalación de ventilación

HL 722

Regulación para instalación de ventilación

Unidad reguladora de la temperatura para la instalación de ventilación HL 720

HL 710

Sistemas de conductos de aire

Planificación y montaje de sistemas de conductos de aire sencillos y complejos

Ingeniería climática

Técnica de ventilación

HM 240

Fundamentos del flujo de aire

Registro de la característica del soplante

HM 240.03

Tubo de presión total electrónico

Medición de la distribución de la velocidad en el tubo de aspiración de HM 240

HM 240.04

Distribución de presión en el cilindro

Cilindro sujeto a flujo incidente transversal; registro de la distribución de presión en la estela del cilindro junto con el HM 240.03

HM 240.05

Pérdidas de carga en elementos de tuberías

Medición de las pérdidas de carga en tramos de tubo rectos, en un codo de 90° y en un ángulo de 90°

HM 240.06

Transferencia de calor convectiva en el cilindro sujeto a flujo incidente transversal

Convección forzada en un elemento calentador

HM 220

Planta de ensayo del flujo de aire

Determinación de las pérdidas de presión y perfiles de velocidad; distintos objetos de medición

WL 312

Transferencia de calor en el flujo de aire

Transferencia de calor por convección en cambiadores de calor de carcasa y tubos y de tubos de aletas

Accesorios para el banco de ensayos: WL 312.01 Transferencia de calor en los tubos lisos,

WL 312.02 Transferencia de calor en los tubos con aletas,

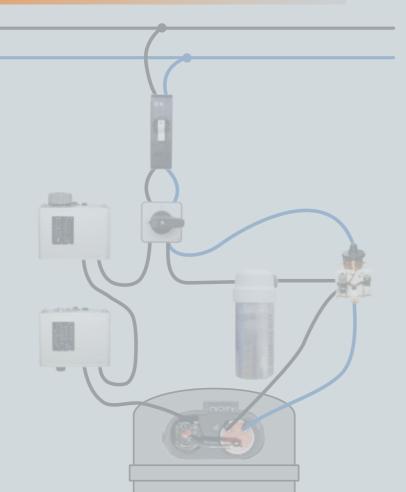
WL 312.03 Transferencia de calor en el evaporador para refrigerante

Electrotecnia en la refrigeración e ingeniería climática Controles de la refrigeración

ET 144 Instalación eléctrica en instalaciones frigoríficas

Montaje y cableado de circuitos eléctricos típicos de la refrigeración

ET 171 Conexión eléctrica de compresores de refrigerante Utilización de un compresor de refrigerante real


Electrotecnia en la refrigeración e ingeniería climática Regulación de instalaciones frigoríficas

ET 930

Regulación del evaporador con válvula de expansión electrónica

Programación orientada a la práctica de un regulador de refrigeración moderno

Electrotecnia en la refrigeración e ingeniería climática Localización de fallos

ET 172

Fallos eléctricos en compresores de refrigerante

Estudio de componentes eléctricos importantes de la refrigeración

ET 170

Fallos eléctricos en instalaciones de aire acondicionado sencillas

Simulación de una instalación de aire acondicionado sencilla con compresor, soplante y termostato

ET 174

Fallos eléctricos en instalaciones de aire acondicionado completas

Simulación del circuito eléctrico de una instalación de aire acondicionado completa con humectación y función de bomba de calor

4 Mecánica de fluidos

Fundamentos de mecánica de fluidos

Principios físicos y propriedades de fluidos	134
Fundamentos de la hidrostática	135
Flujo alrededor de cuerpos	135
Fundamentos de la hidrodinámica	136
Flujo en tuberías	137
Métodos de medida de caudales	137
Mecánica de fluidos compacta: fluidtutor	138
Turbomáquinas	138
Flujo en canales abiertos	139
Compacto + digital:	

HM 250 Fundamentos de la mecánica de fluidos 140

Flujos estacionarios

Fundamentos de flujos estacionarios	142
Flujos estacionarios de fluidos compresibles	144
Flujo en sistemas de tuberías	145
Flujo en válvulas	147
Métodos de medida de caudales	147
Cavitación	148

Ejemplos de flujos no estacionarios

Flujo alrededor de cuerpos

Máquinas fluidomecánicas hidráulicas

Turbinas hidráulicas	153
Máquinas generatrices	154
Bombas centrífugas	155
Rombas de desplazamiento positivo	155

Elementos de sistemas de tuberías de ingeniería de plantas

Modelos seccionados	156
Kits de montaje: valvulería	160
Montaje y mantenimiento: bombas	161
Construción de sistemas de tuberías y de ingeniería de plantas	162

149

Plantas de ensayo fluídicas

Mecánica de fluidos

Fundamentos de mecánica de fluidos Principios físicos y propriedades de fluidos Fundamentos de mecánica de fluidos

WL 202

Fundamentos de la medida de temperatura

Introducción experimental a la medida de temperatura: métodos, aplicaciones, características

WL 203 Fundamentos de la medida de presión Medición de la sobrepresión y depresión con diferentes aparatos de . medición

HM 150.02 Calibración de instrumentos de medición de presión

Funcionamiento de un manómetro de Bourdon y de un manómetro de émbolo

WL 102 Cambio de estado de los gases

Cambio isotérmico e isocórico del estado del aire

WL 103

Expansión de gases ideales

Determinación del exponente adiabático según Clément-Desormes

WL 205

Curva de vapor de agua

Medición de presión y temperatura en una caldera de vapor, evaluación de ensayos basadas en software

WL 204

Presión de vapor del agua

Medición de presión y temperatura en una caldera de vapor

Fundamentos de mecánica de fluidos Fundamentos de la hidrostática

HM 115

Banco de ensayos sobre hidrostática

Ensayos referentes a: flotabilidad, densidad, efecto capilar y ensayos similares; diversos métodos de medición de la presión

HM 150.05

Presión hidrostática en líquidos

Presión del líquido en las paredes de recipientes

HM 150.06

Estabilidad de cuerpos flotantes

Determinación del metacentro y del empuje; sección transversal rectangular de cuaderna

HM 150.39

Cuerpos flotantes para HM 150.06

Comparación de dos formas de cuaderna diferentes: cuaderna en forma

de V y cuaderna en forma de U

Fundamentos de mecánica de fluidos Flujo alrededor de cuerpos

HM 150.10

Visualización de líneas de corriente

Estudio de modelos en un flujo laminar bidimensional: tinta como prodcuto de contraste

Se recomienda parasuministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 135

Determinación de la velocidad de descenso

Descenso vertical de un cuerpo en líquido; cuerpos de prueba de tamaño y material diferentes

Fundamentos de mecánica de fluidos Fundamentos de la hidrodinámica

HM 150.18

Ensayo de Osborne Reynolds

Visualización de flujo laminar y turbulento

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.07 Principio de Bernoulli

Presiones estáticas y distribución de la presión total a lo largo del tubo de Venturi

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.08

Medición de fuerzas ejercidas por un chorro

Demostración del principio del momento lineal; deflectores intercambiables con distintos ángulos de desviación

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

TM 605 Fuerza de Coriolis

Fuerzas virtuales en un sistema de referencia giratorio

HM 150.09

Descarga horizontal por orificios

Registro de trayectoria del chorro de agua en velocidades de salida distintas

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.12

Descarga vertical por orificios

Determinación de pérdidas de carga y coeficiente de descarga para distintos perfiles de salida

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.14

Formación de vórtices

Vórtices libres y forzados; dispositivos palpadores para registrar los perfiles superficiales

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150

Módulo básico para ensayos sobre mecánica de fluidos

Medición volumétrica del caudal (caudales grandes y pequeños)

Fundamentos de mecánica de fluidos Flujo en tuberías

HM 150.01

Fricción de tubo en un flujo laminar / turbulento

Determinación del número de Reynolds crítico

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.11

Pérdidas de carga en el sistema de tuberías

Influencia de la velocidad de flujo en la pérdida de presión

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.29

Pérdida de energía en elementos de tuberías

Pérdidas de carga en distintos elementos de tuberías y en el grifo de bola

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

Fundamentos de mecánica de fluidos **Métodos de medida de caudales**

HM 150.13

Principios fundamentales de la medición de caudal

Comparación de diversos métodos de medición y determinación del coeficiente de caudal

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

 136

Fundamentos de mecánica de fluidos Mecánica de fluidos compacta: fluidtutor

HM 241

Fundamentos del flujo de agua

Flujo en tubos y flujo en canales abiertos; el montaje transparente permite la observación de los procesos de flujo

Fundamentos de mecánica de fluidos **Turbomáquinas**

HM 150.19

Principio de funcionamiento de una turbina Pelton

Modelo de una turbina de impulsión con tobera ajustable; determinación del rendimiento

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.20

Principio de funcionamiento de una turbina Francis

Modelo de una turbina de reacción con álabes distribuidores ajustables; determinación del rendimiento

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.04

Bomba centrífuga

Registro de una característica típica de una bomba

HM 150 Módulo básico para ensayos sobre mecánica de fluidos necesario

HM 150.16

Conexión en serie y en paralelo de bombas

Curvas características y potencia hidráulica; comparación de los modos de funcionamiento

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

Fundamentos de mecánica de fluidos Flujo en canales abiertos

HM 150.03

Vertederos de cresta delgada para el HM 150

Medición de descarga en canales abiertos con ayuda de dos vertederos de medición

HM 150 Módulo básico para ensayos sobre mecánica de fluidos necesario

HM 150.21

Visualización de líneas de corriente en canales abiertos

Flujo alrededor de distintos cuerpos de resistencia y flujo incidente de vertederos; tinta como producto de contraste

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 164

HM 160

Canal de ensayo 86 x 300 mm

Sección de ensayo suministrable en longitudes de 2,5m ó 5m,

circuito de agua cerrado, ajuste de la inclinación

Flujo en canales abiertos y cerrados

Procesos de flujo en diferentes estructuras de control; pérdidas en la entrada y salida

Ensayos

HM160

- estructuras de control
- medición de la descarga
- transversal
- generador de olas
- plavas
- pilotes vibratorios ■ modificación de la sección ■ trampa de sedimentos
 - alimentador de sedi
 - mentos

Instrumentos de medición

- indicadores del nivel, analógico o con indicador digital
- determinación de la velocidad vía tubo de Pitot estático o vía velocímetro

Accesorios para el canal de ensayo

■ medición de presión

Otros accesorios

sistema UV para la desinfección ■ elemento de prolongación

guni Todos los canales de ensayo GUNT

Fundamentos de mecánica de fluidos

Compacto + digital: HM 250 Fundamentos de la mecánica de fluidos

HM 250

Fundamentos de la mecánica de fluidos

Módulo básico para ensayos sobre mecánica de fluidos, control de instalación mediante PLC

HM 250.01 Visualización de flujos en tuberías Visualización de flujo laminar y turbulento

Visualización de líneas de corriente

Estudio de los cambios en la sección transversal del flujo laminar bidimensional; visualización con ayuda de burbujas de hidrógeno generadas electrolíticamente

HM 250.06 Descarga libre

Determinar la trayectoria del chorro de agua y coeficiente de descarga para distintos perfiles de salida

HM 250.07 Principio de Bernoulli Presiones estáticas y distribución de la presión total a lo largo del tubo de Venturi

HM 250.11

Canal abierto

incidente de

presas

de resistencia y flujo

Flujo alrededor de varios cuerpos

Fundamentos de la fricción de tubo

Fricción de tubo en un flujo laminar turbulento, número de Reynolds y del coeficiente de fricción de tubo

HM 250.10

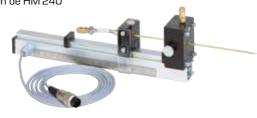
Desarrollo de presión a lo largo de la sección de entrada

Pérdidas por fricción en la entrada, así como con diferentes geometrías de tubería y rugosidades

accesorios para HM 250

1

Flujos estacionarios


Fundamentos de flujos estacionarios

HM 240 Fundamentos del flujo de aire Registro de la característica del soplante

HM 240.03

Tubo de presión total electrónico

Medición de la distribución de la velocidad en el tubo de aspiración de HM 240 $\,$

HM 240.04

Distribución de presión en el cilindro

Cilindro sujeto a flujo incidente transversal; registro de la distribución de presión en la estela del cilindro junto con el HM 240.03 HM 240.06 Transferencia de calor convectiva en el cilindro sujeto a flujo incidente transversal

Convección forzada en un elemento calentador

HM 240.05

Pérdidas de carga en elementos de tuberías

Medición de las pérdidas de carga en tramos de tubo rectos, en un codo de 90° y en un ángulo de 90°

HM 241

Fundamentos del flujo de agua

Flujo en tubos y flujo en canales abiertos; el montaje transparente permite la observación de los procesos de flujo

HM 220

Planta de ensayo del flujo de aire

Determinación de las pérdidas de presión y perfiles de velocidad; distintos objetos de medición

HM 220.01

Tubo de Venturi

Comprobación de la ecuación de continuidad y el principio de Bernoulli; representación del desarrollo de presión

HM 220.02

Mediciones de la capa límite

Distribución de la velocidad y espesor de la capa límite en la capa límite de una placa plana expuesta a un flujo incidente longitudinal; tubo de Pitot desplazable verticalmente

HM 225

Banco de ensayos sobre aerodinámica

Para ensayos del áreas de cuerpos expuestos a flujos alrededores y de flujos estacionarios incompresibles

HM 225.03

Principio de Bernoulli

Presiones estáticas y distribución de la presión total a lo largo del tubo de Venturi

HM 225.05

Flujo en un codo de tubería

Determinación de la presión estática en 29 puntos de medición de presión

HM 225.07 Chorro libre

Estudio del flu

Estudio del flujo producido por toberas

Flujos estacionarios

Flujos estacionarios de fluidos compresibles

HM 230

Flujo de fluidos compresibles

Flujos subsónicos y sónicos a través de diversos objetos de medición

HM 172

Túnel de viento supersónico con óptica de Schlieren

Óptica de Schlieren para la visualización de ondas de Mach y ondas de choque en cuerpos de resistencia; paredes intercambiables en la sección de medida para generar velocidades de hasta Mach 1,8

HM 260

Variables características de toberas

Medición de la fuerza de impacto y/o empuje para determinar la velocidad de salida y el rendimiento

HM 261

Distribución de la presión en toberas

Medición de los desarrollos de presión en una tobera convergente y en toberas de Laval

Flujos estacionarios

Flujo en sistemas de tuberías

HL 102

Ingeniería de instalación: pérdidas en diversas tuberías

Medición de la diferencia de presión en cuatro secciones de tubo de igual longitud hechos de diferentes materiales

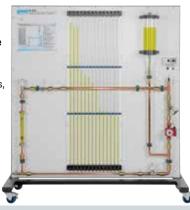
HL 103

Ingeniería de instalación: pérdidas en codos de tuberías

Estudio de la pérdida de carga en elementos de tuberías con distintos cambios en la dirección de la tubería y materiales

HL 113

Ingeniería de instalación: pérdidas en robineterías


Pérdidas de carga en válvulas de cierre estándar: grifo de bola, válvula de asiento inclinado, válvula de paso, válvula de compuerta de cierre

HL 210

Ingeniería de instalación: pérdidas en el sistema de tuberías

Visualización de pérdidas de carga en contracciones, ángulos de tubería, codos de tubería, robineterías y elementos de tubería

HL 111

Ingeniería de instalación: pérdidas en tuberías rectas

Determinación de las pérdidas de flujo en una sección de tubo abierta

HM 222

Flujo de aire en tuberías y elementos de tuberías

Resistencias y pérdidas en el flujo laminar y turbulento en tuberías

HM 120 Pérdidas en elementos de tuberías

Influencia del diámetro del tubo, material y rugosidad de la superficie, velocidad del flujo

HM 112

Banco de ensayos de mecánica de fluidos

Objetos de medición intercambiables y diferentes secciones de tubo

Flujos estacionarios

Flujo en sistemas de tuberías

HM 111

Redes de tuberías

Pérdidas de carga en distintos elementos de tuberías y redes de tuberías; conexión en serie y en paralelo de secciones de tubo

HM 124

Planta de ensayo de mecánica de fluidos

Estudios en bombas centrífugas, válvulas de ajuste, tuberías y robineterías; gran escala, componentes industriales y técnica de medición de alta calidad proporcionan resultados de medición realistas.

HM 122

Pérdidas de carga en tuberías

Resistencias y pérdidas en un tubo con flujo turbulento, cámaras de ensayos largas con varios puntos de medición de la presión

Flujos estacionarios **Flujo en válvulas**

RT 390

Banco de ensayos para válvulas de control

Estructura y funcionamiento de válvulas de control; determinación del valor Kv

RT 396

Banco de pruebas para bombas y robineterías

Registro de las curvas características de robineterías industriales y de una bomba centrífuga

Flujos estacionarios **Métodos de medida de caudales**

HM 500

Banco de ensayos para caudalímetros

Comparación y calibración de diferentes caudalímetros

Diversos caudalímetros HM 500.01-HM 500.16 están disponibles como accesorios.

Flujos estacionarios Cavitación

HM 380

Cavitación en bombas

Visualización de los efectos de cavitación en una bomba transparente; influencia del número de revoluciones, presión de entrada, caudal y temperatura en la cavitación

ST 250

Cavitación

Visualización de la formación de burbujas de vapor de un tubo de Venturi

HM 156

Golpes de ariete y chimenea de equilibrio

Estudio de creación, efecto y funcionamiento

HM 150.09

Descarga horizontal por orificios

Registro de trayectoria del chorro de agua en velocidades de salida distintas

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.12

Descarga vertical por orificios

Determinación de pérdidas de carga y coeficiente de descarga para distintos perfiles de salida

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 155

Golpes de ariete en tuberías

Golpes de ariete en función del tiempo de cierre de válvulas; cálculo de la velocidad de propagación de ondas en agua

HM 150.14

Formación de vórtices

Vórtices libres y forzados; dispositivos palpadores para registrar los perfiles superficiales

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.15

Ariete hidráulico - elevación con ayuda de golpes de ariete

Creación y efecto de los golpes de ariete

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 143

Procesos de desagüe no estacionarios en depósitos de reserva

Demostración del funcionamiento de un depósito de retención pluvial y un embalse

Flujo alrededor de cuerpos

HM 170

Túnel de viento abierto

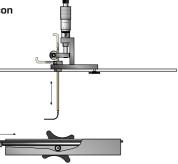
Ensayos en las áreas de la aerodinámica y mecánica de fluidos con un túnel de viento del tipo "Eiffel"

HM 170.70

Central eólica con variación del paso

Expansión de túnel de viento HM 170

HM 170.22


Distribución de la presión en una superficie sustentadora NACA 0015

Ensayos con diferentes ángulos de ataque del perfil de la superficie sustentadora

HM 170.24 Estudio de la capa límite con tubo de Pitot

Estudio de la capa limite en una placa plana con flujo incidente longitudinal; dos superficies distintas

HM 170.28 Medición de la estela

Distribución de la presión detrás de un cilindro expuesto a flujos alrededores; determinación de la fuerza de resistencia

HM 225

Banco de ensayos sobre aerodinámica

Para ensayos del áreas de cuerpos expuestos a flujos alrededores y de flujos estacionarios incompresibles

HM 225.02 Capas límite

Estudio en dos superficies de distinta rugosidad

HM 225.04

Fuerzas de resistencia

Determinación de las fuerzas de resistencia en modelos expuestos a flujos alrededores

HM 225.06

Efecto Coanda

Estudio de una corriente de aire guiada por la superficie; principio de elementos lógicos neumáticos

HM 225.08

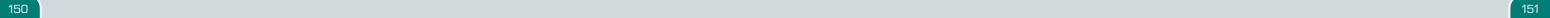
Visualización de líneas de co-

Redes de líneas de corriente de fluidos reales en diversos modelos; visualización con ayuda de niebla

HM 152

Flujo potencial

Visualización de líneas de corriente en una célula Hele-Shaw; tinta como producto de contraste


HM 150.10

Visualización de líneas de corriente

Estudio de modelos en un flujo laminar bidimensional; tinta como prodcuto

Se recomienda parasuministro de agua: HM 150 Módulo básico para

de contraste ensayos sobre mecánica de fluidos

Flujo alrededor de cuerpos

HM 226

Túnel de viento para la visualización de líneas de corriente

Tramo de ensayos iluminado, diversos modelos, generador de niebla incluido

HM 153

Visualización de diferentes flujos

Diversos modelos en una sección de ensayos iluminada; flujo laminar y turbulento

HM 133

Visualización de campos de flujo

Canal de agua de poca profundidad; burbujas de hidrógeno generadas electrolíticamente

CE 220

Formación de lecho fluidizado

Estudio de la formación de lechos fluidizados de sólidos en aire y agua

HM 136

Flujo a través de columnas de relleno

Comparación de diferentes modos de funcionamiento; agua o agua y aire, funcionamiento con flujos paralelos o flujos a contracorriente

HM 132

Visualización vertical de campos de flujo

Visualización con ayuda de burbujas de hidrógeno generadas electrolíticamente

Máquinas fluidomecánicas hidráulicas Turbinas hidráulicas

HM 450C

Variables características de turbomáquinas hidráulicas

Determinación de la potencia y el rendimiento de turbinas y bombas; demostración de una central de acumulación por bombeo

HM 450.01 Turbina Pelton

Modelo de una turbina de chorro con medición de número de revoluciones y par

HM 450.02 Turbina Francis

Modelo de una turbina de reacción con medición de número de revoluciones y par; álabes orientables

HM 450.03

Turbina de hélice

Turbina de hélice de seis álabes móviles. distribuidor con álabes orientables para el ajuste de la potencia, determinación de número de revoluciones y par

HM 450.04

Turbina Kaplan

Turbina Kaplan de cinco álabes móviles ajustables y distribuidor con álabes distribuidores ajustables para el ajuste de la potencia, determinación de número de revoluciones y par

HM 287

Ensayos en una turbina axial

Registro de parámetros de una turbina de reacción axial

Planta de ensayo de turbomáquinas axiales

Funcionamiento de una máquina hidrodinámica; configuración como bomba o turbina con rotores/rodetes y estatores/sistemas de álabes distribuidores intercambia-

Máquinas fluidomecánicas hidráulicas **Turbinas hidráulicas**

HM 288 Ensayos en una turbina de reacción

Registro de parámetros de una turbina que funciona según el principio de propulsión a chorro

HM 289 Ensayos en una turbina Pelton

Registro de parámetros de una turbina de chorro

HM 291

Ensayos en una turbina de acción

Registro de parámetros de una turbina de acción axial

HM 290 Unidad de alimentación para turbinas

Suministro de agua para HM 288, HM 289 y HM 291

Máquinas fluidomecánicas hidráulicas **Máquinas generatrices**

HM 299

Comparación de máquinas generatrices de desplazamiento positivo y turbomáquinas

Máquinas generatrices intercambiables: tres tipos de bomba y un compresor

Máquinas fluidomecánicas hidráulicas Bombas centrífugas

HM 283

Ensayos en una bomba centrífuga

Determinación de valores característicos de una bomba

HM 284

Conexión en serie y en paralelo de bombas

Comportamiento de funcionamiento de dos bombas centrífugas; funcionamiento de una bomba, conexión en serie y en paralelo

HM 332

Características de bombas en conexión en serie y en paralelo

Estudio del comportamiento de dos bombas centrífugas iguales en funcionamiento, control de instalación mediante PLC

HM 300

Circuito hidráulico con una bomba centrífuga

Medición de tasas de presión en robineterías

Máquinas fluidomecánicas hidráulicas **Bombas de desplazamiento positivo**

HM 285

Ensayos en una bomba de émbolo

Registro de parámetros de una bomba intermitente de desplazamiento positivo

HM 286

Ensayos en una bomba de engranajes

Registro de características de una bomba rotativa de desplazamiento positivo

Elementos de sistemas de tuberías y de ingeniería de plantas **Modelos seccionados**

HM 700.01

HM 700.03

normalizado

Modelo seccionado:

medidor de Venturi

Modelo seccionado: diafragma normalizado

HM 700.02

Modelo seccionado: tobera normalizada

HM 700.04

Modelo seccionado: válvula de paso

HM 700.05

Modelo seccionado: válvula angular

HM 700.06

Modelo seccionado: válvula de asiento inclinado

HM 700.07

Modelo seccionado: válvula de retención

HM 700.08 Modelo seccionado:

válvula de desahogo de presión

HM 700.09

Modelo seccionado: filtro de malla

HM 700.10

Modelo seccionado: válvula de compuerta

HM 700.11

Modelo seccionado: grifo de paso directo

HM 700.12

Modelo seccionado: grifo de tres vías

HM 700.13

Modelo seccionado: grifo de bola

HM 700.14

Modelo seccionado: válvula de seguridad

HM 700.15 Modelo seccionado:

unión roscada de tubos

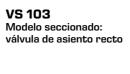
HM 700.16 Modelo seccionado:

aparatos de medición de presión

Elementos de sistemas de tuberías y de ingeniería de plantas **Modelos seccionados**

HM 700.17 Modelo seccionado: bomba centrífuga

HM 700.20 Modelo seccionado: bomba de émbolo


VS 106

Modelo seccionado:

VS 102 Modelo seccionado: válvula de compuerta oval plana de cuña



VS 104 Modelo seccionado: válvula de múltiples vías

VS 105 Modelo seccionado: contador de gas

VS 109

filtro de malla

Elementos de sistemas de tuberías y de ingeniería de plantas Kits de montaje: valvulería

MT 154

Kit de montaje: válvula de cierre

Planificar, montar, desmontar: funcionamiento y construcción de una válvula de cierre

Kit de montaje: compuerta plana de cuña y válvula de asiento inclinado

Montaje, desmontaje y mantenimiento en robinetería industrial

MT 157

Kit de montaje: chapaleta y válvula de retención

Montaje, desmontaje y mantenimiento en robinetería industrial

MT 158

Kit de montaje: grifo de bola y válvula de cierre

Montaje, desmontaje y mantenimiento en robinetería industrial

Kit de montaje: válvula de control con accionamiento neumático

Funcionamiento y construcción de una válvula de control con accionamiento neumático:

planificar, montar, desmontar El material didáctico

multimedia

via internet

Kit de montaje: válvula de control con accionamiento eléctrico

namiento eléctrico; planificar, montar, desmontar

El material didáctico multimedia via internet

Banco de pruebas hidráulico para robinetería

Ensayo de presión para los kits de montaje GUNT MT 154, MT 156, MT 157 y MT 158

Elementos de sistemas de tuberías y de ingeniería de plantas Montaje y mantenimiento: bombas

MT 130

Kit de montaje: bomba centrífuga

Funcionamiento y construcción de una bomba centrífuga; planificar, montar, desmontar

MT 181

Montaje y mantenimiento: bomba centrífuga multietapa

Comprensión de la construcción y del funcionamiento de la bomba; planificación y realización del montaje, desmontaje y mantenimiento

MT 182

Montaje y mantenimiento: bomba de tornillo

Comprensión de la construcción y del funcionamiento de la bomba; planificación y realización del montaje, desmontaje y mantenimiento

MT 183

Montaje y mantenimiento: bomba de diafragma

Comprensión de la construcción y del funcionamiento de la bomba; planificación y realización del montaje, desmontaje y mantenimiento

MT 134

Kit de montaje: bomba de émbolo

Funcionamiento y construcción de una bomba de émbolo; planificar,

MT 185

Montaje y mantenimiento: bomba centrífuga en línea

Comprensión de la construcción y del funcionamiento de la bomba; planificación y realización del montaje, desmontaje y mante-

MT 136

Kit de montaje: bomba de engranajes

Funcionamiento y construcción de una bomba de engranajes; planificar, montar, desmontar

Multimedia instructional materials

Elementos de sistemas de tuberías y de ingeniería de plantas Construción de sistemas de tuberías y de ingeniería de plantas

HL 960

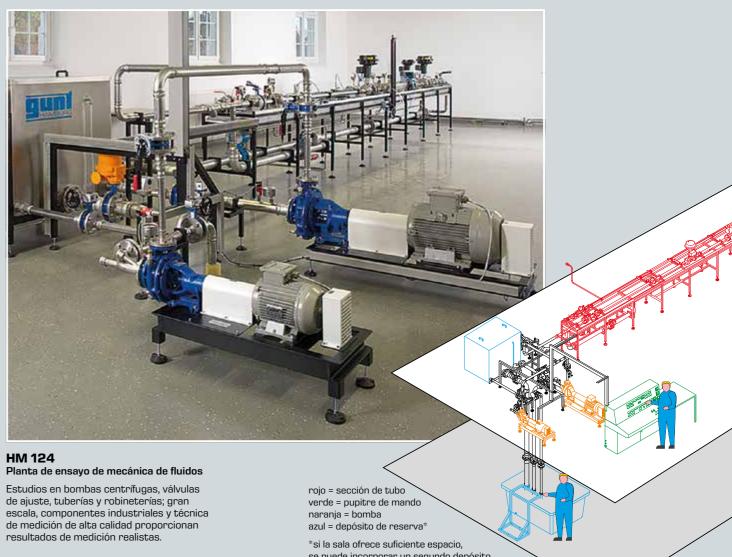
Estación de montaje de tuberías y robineterías

Montaje de tuberías e instalaciones reales; en combinación con HL 960.01: ensayos de funcionamiento en una red de tuberías

HL 961

Estación de montaje compacta de tuberías y robineterías

Montaje de tuberías e instalaciones reales, construcción de ahorro de espacio


HL 960.01

Montaje y alineación de bombas y accionamientos

Montaje y desmontaje de bombas en instalaciones; alimentación de HL 960 con agua

Plantas de ensayo fluídicas

se puede incorporar un segundo depósito en un nivel inferior debajo de la planta de ensayo.

HM 362

Comparación de bombas

HM 405

Planta de ensayo de turbomáquinas axiales

Funcionamiento de una máquina hidrodinámica; configuración como bomba o turbina con rotores/rodetes y estatores/sistemas

tribuidores intercambiables

Plantas de ensayo fluídicas

HL 962

Banco de pruebas para bombas hidráulicas

Unidad básica para el montaje de un sistema de tuberías

HL 962.01

Bomba normalizada química

Bomba típica de la ingeniería de procesos

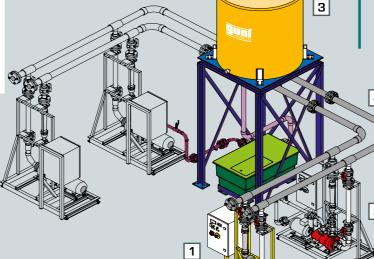
HL 962.02

Bomba con motor provisto de diafragma

Bomba centrífuga hermética, particularmente apropiada para el transporte de gases licuados

HL 962.03

Bomba de canal lateral Bomba centrífuga autocebante de tres etapas



HL 962.04

Bomba normalizada química con acoplamiento magnético


Bomba centrífuga hermética según la norma ISÖ 5199

Posible combinación de componentes individuales para un equipo de bombas apto para funcionar

- 1 banco de pruebas para bombas hidráulicas (HL 962)
- 2 bombas de diversos tipos (HL 962.01 a HL 962.04)
- 3 sistema de depósito (HL 962.30)
- 4 sistema de tuberías para unir los distintos componentes de la instalación (HL 962.32)

HL 710

Sistemas de conductos de aire

Planificación y montaje de sistemas de conductos de aire sencillos y complejos

ST 510

Sistema de demostración de instalaciones de desagüe

Demostración de aspectos esenciales del saneamiento de aguas residuales; un sistema de tuberías transparente permite ver las condiciones de flujo

4a | Máquinas fluidomecánicas

Fundamentos

Mecánica de fluidos	168
Termodinámica	170
Dinámica de máquinas	172

Máquinas motrices

Turbinas de gas	
Turbinas de aire	175
Turbinas hidráulicas	
Motores de combustión interna	

Máquinas generatrices

Bombas centrífugas	179
Bombas axiales	182
Bombas de desplazamiento positivo	183
Soplantes y compresores	186

Centrales y ciclos aplicados

Series de equipos

GUNT Labline	192
GUNT FEMLine: bombas de agua	194
GUNT FEMLine: bombas de aceite	196
GUNT FEMLine: turbinas	197
GUNT FEMLine: motores	198
GUNT FEMLine: plantas	199

Fundamentos Mecánica de fluidos

HM 115

Banco de ensayos sobre hidrostática

Ensayos referentes a: flotabilidad, densidad, efecto capilar y ensayos similares; diversos métodos de medición de la presión

Banco de ensayos de mecánica de fluidos

Objetos de medición intercambiables y diferentes secciones de tubo

HM 122

Pérdidas de carga en tuberías

Resistencias y pérdidas en un tubo con flujo turbulento, cámaras de ensayos largas con varios puntos de medición de la presión

HM 150.09

Descarga horizontal por orificios

Registro de trayectoria del chorro de agua en velocidades de salida distintas

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 250

Fundamentals of fluid mechanics

Módulo básico para ensayos sobre mecánica de fluidos, control de instalación mediante PLC

La extensa selección de accesorios permite un curso completo en los

fundamentos de la mecánica de fluidos

HM 260

Variables características de toberas

Medición de la fuerza de impacto y/o empuje para determinar la velocidad de salida y el rendimiento

HM 261

Distribución de la presión en toberas

Medición de los desarrollos de presión en una tobera convergente y en toberas de Laval

HM 230

Flujo de fluidos compresibles

Flujos subsónicos y sónicos a través de diversos objetos de medición

HM 380

Cavitación en bombas

Visualización de los efectos de cavitación en una bomba transparente; influencia del número de revoluciones, presión de entrada, caudal y temperatura en la cavitación

ST 250 Cavitación

Visualización de la formación de burbujas de vapor de un tubo de Venturi

HM 152

Flujo potencial

Visualización de líneas de corriente en una célula Hele-Shaw; tinta como producto de contraste

HM 133

Visualización de campos de flujo

Canal de agua de poca profundidad; burbujas de hidrógeno generadas electrolíticamente

Túnel de viento para la visualización de líneas de corriente

Tramo de ensayos iluminado, diversos modelos, generador de niebla incluido

HM 241

Fundamentos del flujo de agua

Flujo en tubos y flujo en canales abiertos; el montaje transparente permite la observación de los procesos de flujo

Fundamentos Termodinámica

WL 102 Cambio de estado de los gases

Cambio isotérmico e isocórico del estado del aire

ET 351C

Termodinámica del circuito de refrigeración

Instalación frigorífica de compresión para estudios termodinámicos; medición de la potencia mecánica del compresor

WL 204

Presión de vapor del agua

Medición de presión y temperatura en una caldera de vapor

WL 205

Curva de vapor de agua

Medición de presión y temperatura en una caldera de vapor, evaluación de ensayos basadas en software

de calor convectivas en diferentes formas geométricas: placa plana, cilindro, haz de tubos

WL 372

Conducción de calor radial y lineal

Estudio de la conducción de calor en cuerpos sólidos

WL 210

Proceso de evaporación

Diferentes formas de ebullición en un tubo calentado exteriormente

WL 220 Proceso de ebullición

Visualización de diversos regímenes de ebullición en un depósito a presión transparente

WL 230 Proceso de condensación

Medición de la transferencia de calor en condensación en gotas y condensación en película

WL 110

Unidad de alimentación para cambiadores de calor

Medición de las propiedades de transferencia de cinco diferentes modelos de cambiadores de calor, control de instalación mediante PLC

WL 110.02

Cambiador de calor de placas

Cambiador de calor de placas típico con funcionamiento con flujos paralelos o flujos a contracorriente

WL 110.01

Cambiador de calor de tubos concéntricos

Cambiador de calor transparente con un punto de medición de temperatura adicional en la mitad del tramo de ensayos; funcionamiento con

o flujos a contraco-

WL 110.04

Depósito de agitación con doble camisa y serpentín

Calentamiento por camisa o por serpentín; mecanismo de agitación para mezclar mejor el fluido

WL 110.03

Cambiador de calor de carcasa y tubos

Cambiador de calor transparente con funcionamiento con flujos paralelos cruzados o flujos a contracorriente cruzados

WL 110.05

Cambiador de calor de tubos de aletas Transferencia de calor

entre el agua y el aire; funcionamiento de flujo cruzado

WL 320

Torre de refrigeración por vía húmeda

Modo de acción y parámetros de una torre de refrigeración por vía húmeda con ventilación forzada

WL 320.01 - WL 320.04

Columnas de refrigeración, tipo 2 - tipo 5

Columnas de refrigeración con diferentes superficies de humectación

Fundamentos Dinámica de máquinas

RT 050

Kit didáctico para regulación de número de revoluciones, HSI

de regulación en el ejemplo de un sistema controlado de velocidad con comporta-

TM 632 Reguladores centrífugos Curvas características y curvas de ajuste de diferentes reguladores de fuerza centrífuga

TM 180

Fuerzas en motores alternativos

Estudio de las fuerzas inerciales en una máquina de pistones reciprocantes

TM 620

Rotores flexoelásticos

Estudio de vibraciones de flexión y resonancia en un árbol rotatorio

Máquinas motrices Turbinas de gas

HM 270

Turbina de impulso

Estudio de una turbina de impulso axial accionada por aire comprimido

HM 272 Turbina de reacción

Estudio de una turbina de reacción radial accionada por aire comprimido

ET 794

Turbina de gas con turbina de potencia

Disposición de eje doble con turbina de alta presión y turbina de potencia; funcionamiento con gas licuado

ET 792 Turbina de gas

Funcionamiento con turbina de potencia o como motor a reacción con tobera de empuje; funcionamiento con gas licuado

Máquinas motrices Turbinas de aire

ET 220.10 Equipo de mando para central eólica ET 220.01

Utilización de la energía del viento en funcionamiento en isla bajo condiciones meteorológicas reales

ET 220.01 Central eólica Conexión a ET 220 o ET 220.10; la instalación al aire libre permite realizar estudios ligados a la práctica

ET 224

Comportamiento de funcionamiento de central eólica

Características y control de una cadena cinemática de energía eólica

ET 210

Fundamentos de las centrales eólicas

Central eólica con mecanismo de variación del paso y ajuste de la guiñada

ET 222

Cadena cinemática de energía eólica

Ensayos sobre la conversión de energía de rotación en energía eléctrica

ET 270

Central undimotriz

Unidad de turbina con turbina Wells y generador; generador de olas configurable

Máquinas motrices Turbinas hidráulicas

HM 150.19

Principio de funcionamiento de una turbina Pelton

Modelo de una turbina de impulsión con tobera ajustable; determinación del rendimiento

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.20

Principio de funcionamiento de una turbina Francis

Modelo de una turbina de reacción con álabes distribuidores ajustables; determinación del rendimiento

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 287

Ensayos en una turbina axial

Registro de parámetros de una turbina de reacción axial

HM 405

Planta de ensayo de turbomáquinas axiales

Funcionamiento de una máquina hidrodinámica; configuración como bomba o turbina con rotores/rodetes y estatores/sistemas de álabes distribuidores intercambia-

Máquinas motrices Turbinas hidráulicas

HM 450C

Variables características de turbomáquinas hidráulicas

Determinación de la potencia y el rendimiento de turbinas y bombas; demostración de una central de acumulación por bombeo

HM 450.01 Turbina Pelton

Modelo de una turbina de chorro con medición de número de revoluciones y par

HM 450.02 Turbina Francis

Modelo de una turbina de reacción con medición de número de revoluciones y par; álabes orientables

HM 450.03

Turbina de hélice

Turbina de hélice de seis álabes móviles, distribuidor con álabes orientables para el ajuste de la potencia, determinación de número de revoluciones y par

HM 450.04 Turbina Kaplan

Turbina Kaplan de cinco álabes móviles ajustables y distribuidor con álabes distribuidores ajustables para el ajuste de la potencia, eterminación de número de revoluciones y par

HM 430C

Banco de ensayos turbina Francis

Variables características de una turbina Francis potente con álabes distribuidores ajustables

HM 421

Banco de ensayos turbina de hélice

Turbina de hélice con cuatro álabes móviles, distribuidor con álabes orientables para el ajuste de la potencia

HM 288

Ensayos en una turbina de reacción

Registro de parámetros de una turbina que funciona según el principio de propulsión a chorro

HM 289

Ensayos en una turbina Pelton

Registro de parámetros de una turbina de chorro

HM 291

Ensayos en una turbina de acción

Registro de parámetros de una turbina de acción axial

HM 290

Unidad de alimentación para turbinas

Suministro de agua para HM 288, HM 289 y HM 291

HM 365.31

Turbina Pelton y turbina Francis

Comparación entre turbinas de acción y de reacción

HM 365.32

Unidad de alimentación para turbinas

Suministro de agua para HM 365.31

Banco de ensayos para turbinas con la unidad básica HM 365.32, turbina Pelton HM 365.31 y unidad de frenado HM 365

Máquinas motrices Motores de combustión interna

Banco de ensayos modular para motores de un cilindro con CT 159, motor de prueba CT 151 y unidad de frenado HM 365

CT 159

Banco de pruebas modular para motores de un cilindro, 3kW

Alojamiento del motor y alimentación con combustible y aire; medición de los datos característicos del motor

HM 365 Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

CT 150

Motor de gasolina de cuatro tiempos para CT 159

Motor Otto de cuatro tiempos de válvulas en cabeza refrigerado por aire

CT 151

Motor diésel de cuatro tiempos para CT 159

Motor diésel de cuatro tiempos con inyección directa refrigerado por aire

CT 153

Motor de gasolina de dos tiempos para CT 159

Motor Otto de dos tiempos refrigerado por aire

Máquinas generatrices Bombas centrífugas

HM 150.04

Bomba centrífuga

Registro de una característica típica de una bomba

HM 150 Módulo básico para ensayos sobre mecánica de fluidos necesario

HM 150.16

Conexión en serie y en paralelo de bombas

Curvas características y potencia hidráulica; comparación de los modos de funcionamiento

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 450C

Variables características de turbomáquinas hidráulicas

Determinación de la potencia y el rendimiento de turbinas y bombas; demostración de una central de acumulación por bombeo

HM 283

Ensayos en una bomba centrífuga

Determinación de valores característicos de una bomba

HM 284

Conexión en serie y en paralelo de bombas

Comportamiento de funcionamiento de dos bombas centrífugas; funcionamiento de una bomba, conexión en serie y en paralelo

HM 300

Circuito hidráulico con una bomba centrífuga

Medición de tasas de presión en robineterías y bomba

HM 305 Banco de ensayos bomba centrífuga

Presión, caudal velocidad, momento v rendimiento de la bomba disponibles como valores de medición

Máquinas generatrices Bombas centrífugas

HM 365.11 Bomba centrífuga, diseño estándar

Las bombas estándar son bombas con especificaciones definidas internacionalmente

HM 365.12 Bomba centrífuga, autocebante

Las bombas autocebantes pueden aspirar y transportar aire y agua

bomba centrífuga HM 365.11 y unidad de accionamiento HM 365.

multietapa En las bombas centrífugas multietapa se conectan varios

rodetes en serie

HM 365.13

Bomba centrífuga,

HM 365.14 Bombas centrífugas, conexión en serie y en paralelo

Estudio de las características de elevación de dos bombas conectadas en serie y en paralelo

HM 365.15 Bomba periférica

Estudio de una bomba periférica autocebante de una etapa

HM 365.10 Unidad de alimentación para bombas de agua

Suministro de agua para HM 365.11 a HM 365.19

HM 332

Características de bombas en conexión en serie y en paralelo

Estudio del comportamiento de dos bombas centrífugas iguales en funcionamiento, control de instalación mediante PLC

HM 362

Comparación de bombas

Comportamiento de bombas centrífugas, estudio de una bomba de émbolo y una bomba periférica

Máquinas generatrices Bombas axiales

Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

HM 365.45

Bomba axial

Comportamiento de una bomba de hélice axial

HM 405

Planta de ensayo de turbomáquinas axiales

Funcionamiento de una máquina hidrodinámica;

configuración como bomba o turbina con y estatores/sistemas de álabes distribe

Máquinas generatrices **Bombas de desplazamiento positivo**

HM 285

Ensayos en una bomba de émbolo

Registro de parámetros de una bomba intermitente de desplazamiento positivo

HM 286

Ensayos en una bomba de engranajes

Registro de características de una bomba rotativa de desplazamiento positivo

CE 271

Bomba de diafragma de varias cabezas

Bomba dosificadora con tres cabezas de bomba

CE 272

Bomba de vacío rotativa de paletas

Desarrollo temporal de la generación de depresión

Máquinas generatrices Bombas de desplazamiento positivo

Banco de ensayos para bombas de desplazamiento positivo con la unidad básica HM 365.10, bomba de émbolo HM 365.17 y unidad de accionamiento HM 365.

HM 365.16

Bomba de émbolo rotativo

Las bombas de émbolo rotativo se utilizan para transportar fluidos altamente abrasivos y viscosos

HM 365.17 Bomba de émbolo alternativo

La forma más sencilla de bomba de émbolo consta de un émbolo, que gira en un cilindro, y de una válvula de admisión y una de descarga respectivamente

HM 365.18 Bomba de engranajes

Una bomba de engranajes destaca por su caudal uniforme

HM 365.19 Bomba de paletas

Las bombas de paletas se pueden utilizar para fluidos líquidos y gaseosos

HM 365.10 Unidad de alimentación para bombas de agua

Suministro de agua para HM 365.11 a HM 365.19

HM 365 Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

-

Banco de ensayos para bombas de desplazamiento positivo con la unidad básica HM 365.20, bomba de husillo HM 365.21 y unidad de accionamiento HM 365.

HM 365.21

Bomba de husillo

Bombas de husillo transportan también fluidos semilíquidos continuamente sin pulsación ni turbulencias

HM 365.22

Bomba de engranajes externos

El fluido desplazado es transportado entre los engranajes y la carcasa

HM 365.23

Bomba de paletas

Las bombas de paletas se pueden utilizar para fluidos líquidos y gaseosos

HM 365.24

Bomba de engranajes internos

Una rueda de engranajes interna acciona un anillo de engranajes externo

HM 365.20 Unidad de alimentación

para bombas de aceite Alimentación de las

bombas de aceite HM 365.21 a HM 365.24

HM 365

Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

Máquinas generatrices Soplantes y compresores

HM 280

Ensayos en un soplante radial

Comportamiento de funcionamiento y características de un soplante radial; dos rotores intercambiables

HM 210

Variables características de un soplante radial

Determinación del caudala a través de un diafragma de iris o un tubo de Venturi

HM 292

HM 215

Soplante axial de dos etapas

Ensayos en un compresor radial

Compresor de dos etapas: registro de la curva característica del compresor para las dos etapas

HM 282

Ensayos en un soplante axial

y características de un soplante axial

Comportamiento de funcionamiento

HM 299

Comparación de máquinas generatrices de desplazamiento positivo y turbomáquinas

Compresor de una sola etapa ET 513 con unidad de accionamiento HM 365

Máquinas generatrices intercambiables: tres tipos de bomba y un compresor

ET 513

Compresor de émbolo de una etapa

Estudios en un compresor de aire con determinación de la potencia mecánica absorbida

HM 365

Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

Compresor de émbolo de dos etapas

Registro de la curva característica de un compresor industrial de dos etapas, control de instalación mediante PLC

Centrales y ciclos aplicados

ET 810

Central térmica de vapor con máquina de vapor

Máquina de vapor de émbolo de uno cilindro con caldera calentada por gas para generar vapor

ET 850

Generador de vapor

Generador de vapor calentado por gas a escala de laboratorio para vapor húmedo o vapor sobrecalentado; condensador integrado

ET 851

Turbina de vapor axial

Turbina de vapor de una etapa con medición de potencia; suministro de vapor vía ET 850, calentado por gas o ET 852, eléctrico

ET 852 Generador de vapor eléctrico

Generador de vapor eléctrico a escala de laboratorio para vapor sobrecalentado; condensador integrado; alternativa al generador de vapor calentado por gas ET 850 para la alimentación de la turbina de vapor ET 851

Planta de ensayo con máquina de vapor de dos cilindros ET 813, generador de vapor ET 813.01 y unidad de frenado HM 365

ET 813

Máquina de vapor de dos cilindros

Máquina de vapor de efecto simple con condensación; determinación de la potencia mecánica y el rendimiento

HM 365

Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

Central térmica de vapor 1,5kW

Caldera de vapor calentada por aceite, turbina industrial pequeña de una sola etapa, condensador y tratamiento del agua de alimentación; supervisión vía PLC

ET 830.01 (115 kW) oder ET 830.02 (140 kW) für Dampfkraftanlage ET 830 zur Rückkühlung des Kühlwassers

ET 794

Turbina de gas con turbina de potencia

Disposición de eje doble con turbina de alta presión y turbina de potencia; funcionamiento con gas licuado

Turbina de gas como motor a reacción

Turbina de gas pequeña de un solo eje con medición del empuje; funcionamiento con queroseno o petróleo

Centrales y ciclos aplicados

Instalación frigorífica de compresión ET 165 con unidad de accionamiento HM 365

ET 165

Instalación frigorífica con compresor abierto

Medición de potencia en un compresor abierto con número de revoluciones variable; cámara de refrigeración con carga de refrigeración regulable

HM 365 Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

ET 352

Compresor de chorro de vapor en la refrigeración

Generación de frío con ayuda de energía térmica; un condensador y un evaporador transparente permiten ver los procesos internos

ET 430

Instalación frigorífica con compresión de dos etapas

Instalación frigorífica de baja temperatura; compresión con refrigerador intermedio de inyección y subenfriamiento adicional del refrigerante

Cursos de formación para personal docente y de laboratorio

Tan importantes como disponer de equipos modernos y fiables

Le ofrecemos un asesoramiento exactamente adaptado a sus exigencias:

- uso y manejo general del equipo
- funciones del equipo y sus componentes
- indicaciones de seguridad para el funcionamiento del equipo
- aspectos de la puesta en marcha, del encendido y del mantenimiento del equipo
- introducción en el software (según disponibilidad)
- explicación de los diversos ensayos y detalles de las instrucciones de uso

Nuestro equipo de expertos está a su disposición en cualquier lugar y en cualquier momento. ¡Contacte con nosotros!

Series de equipos GUNT Labline

HM 288

Ensayos en una turbina de reacción

Registro de parámetros de una turbina que funciona según el principio de propulsión a chorro

HM 289 Ensayos en una turbina Pelton

Registro de parámetros de una turbina de chorro

HM 291

Ensayos en una turbina de acción

Registro de parámetros de una turbina de acción axial

HM 290 Unidad de alimentación para turbinas

Suministro de agua para HM 288, HM 289 y HM 291

HM 287

Ensayos en una turbina axial

Registro de parámetros de una turbina de reacción axial

HM 283

Ensayos en una bomba centrífuga

Determinación de valores característicos de una bomba

HM 284

Conexión en serie y en paralelo de bombas

Comportamiento de funcionamiento de dos bombas centrífugas; funcionamiento de una bomba, conexión en serie y en paralelo

HM 285

Ensayos en una bomba de émbolo

Registro de parámetros de una bomba intermitente de desplazamiento positivo

HM 280

Ensayos en un soplante radial

Comportamiento de funcionamiento y características de un soplante radial; dos rotores intercambiables

HM 282

Ensayos en un soplante axial

Comportamiento de funcionamiento y características de un soplante axial

HM 286

Ensayos en una bomba de engranajes

Registro de características de una bomba rotativa de desplazamiento positivo

HM 292

Ensayos en un compresor radial

Compresor de dos etapas: registro de la curva característica del compresor para las dos etapas

Series de equipos

GUNT FEMLine: bombas de agua

HM 365.11 Bomba centrífuga, diseño estándar

Las bombas estándar son bombas con especificaciones definidas internacionalmente

HM 365.12 Bomba centrífuga, autocebante

Las bombas autocebantes pueden aspirar y transportar aire y agua

HM 365.13

En las bombas

multietapa

Bomba centrífuga,

centrífugas multietapa

se conectan varios

rodetes en serie

HM 365.14

Bombas centrífugas, conexión en serie y en paralelo

Estudio de las características de elevación de dos bombas conectadas en serie y en paralelo

HM 365.45 Bomba axial

Comportamiento de una bomba de hélice axial

HM 365.16

Bomba de émbolo rotativo

Las bombas de émbolo rotativo se utilizan para transportar fluidos altamente abrasivos y viscosos

HM 365.17

Bomba de émbolo alternativo

La forma más sencilla de bomba de émbolo consta de un émbolo, que gira en un cilindro, y de una válvula de admisión y una de descarga respectivamente

HM 365.18

Bomba de engranajes

Banco de ensayos para

bombas centrífugas con la unidad básica HM 365.10,

bomba centrífuga HM 365.11 y unidad de accionamiento HM 365

Una bomba de engranajes destaca por su caudal uniforme

HM 365.19 Bomba de paletas

Las bombas de paletas se pueden utilizar para fluidos líquidos y gaseosos

HM 365.15 Bomba periférica

Estudio de una bomba periférica autocebante de una etapa

HM 365.10 Unidad de alimentación para bombas de agua

Suministro de agua para HM 365.11 a HM 365.19

HM 365

Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

Series de equipos

GUNT FEMLine: bombas de aceite

Banco de ensayos para bombas de desplazamiento positivo con la unidad básica HM 365.20, bomba de husillo HM 365.21 y unidad de accionamiento HM 365.

HM 365.21 Bomba de husillo

Bombas de husillo transportan también fluidos semilíquidos continuamente sin pulsación ni turbulencias

HM 365.22 Bomba de engranajes externos

El fluido desplazado es transportado entre los engranajes y la carcasa

HM 365.23

Bomba de paletas

Las bombas de paletas se pueden utilizar para fluidos líquidos y gaseosos

HM 365.20 Unidad de alimentación

para bombas de aceite Alimentación de las bombas de aceite

HM 365.21 a

HM 365.24

HM 365.24

Bomba de engranajes internos

Una rueda de engranajes interna acciona un anillo de engranajes externo

HM 365 Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

Series de equipos

GUNT FEMLine: turbinas

HM 365.31

Turbina Pelton y turbina Francis

Comparación entre turbinas de acción y de reacción

HM 365.32

Unidad de alimentación para turbinas

Suministro de agua para HM 365.31

Series de equipos **GUNT FEMLine: motores**

Banco de ensayos modular para motores de un cilindro con CT 159, motor de prueba CT 151 y unidad de frenado HM 365

CT 159

Banco de pruebas modular para motores de un cilindro, 3kW

Alojamiento del motor y alimentación con combustible y aire; medición de los datos característicos del motor

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

CT 150

Motor de gasolina de cuatro tiempos para CT 159

Motor Otto de cuatro tiempos de válvulas en cabeza refrigerado por aire

CT 151

Motor diésel de cuatro tiempos para CT 159

Motor diésel de cuatro tiempos con inyección directa refrigerado por aire

CT 153 Motor de gasolina de dos tiempos para CT 159

Motor Otto de dos tiempos refrigerado por aire

Series de equipos **GUNT FEMLine: plantas**

Planta de ensayo con máquina de vapor de dos cilindros ET 813, generador de vapor ET 813.01 y unidad de frenado HM 365

ET 813

Máquina de vapor de dos cilindros

HM 365

Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

Series de equipos **GUNT FEMLine: plantas**

ET 513 Compresor de émbolo de una etapa Estudios en un compresor de aire con determinación de la potencia mecánica absorbida

Instalación frigorífica de compresión ET 165 con unidad de accionamiento HM 365

Instalación frigorífica con compresor abierto

Manuales

La política de GUNT en lo referente a su programa consiste en lo siguiente: un hardware de alta calidad y un material didáctico claro e ilustrativo garantizan el éxito de aprendizaje y enseñanza de un equipo de ensayo.

La parte esencial de este material didáctico son los ensayos de referencia que nosotros mismos realizamos. La descripción del ensayo contiene todo desde el montaje experimental concreto hasta la interpretación de los resultados obtenidos. Un grupo de ingenieros expertos desarrolla y actualiza el material didáctico.

Si a pesar de todo aún tiene alguna duda, no dude en contactarnos telefónicamente. En caso de necesidad también estaremos a su disposición en sus propias instalaciones.

4b | Hidráulica para ingenieros civiles

Fundamentos de mecánica de fluidos

Hidrostática	204
Descarga	205
Hidrodinámica	206
Flujos en tuberías	208
Flujos no estacionarios	209
Turbomáquinas	210

Ingeniería hidráulica

Flujo en canales abiertos	210
Modelos para los canales de ensayo GUNT	212
Instrumentos de medición para los canales de ensayo GUNT	214
Otros accesorios para los canales de ensayo GUNT	215
Transporte de sedimentos	216
Flujo de filtración	217

Al producto:

Fundamentos Hidrostática Fundamentos de mecánica de fluidos

HM 115

Banco de ensayos sobre hidrostática

Ensayos referentes a: flotabilidad, densidad, efecto capilar y ensayos similares; diversos métodos de medición de la presión

HM 150.06 Estabilidad de cuerpos flotantes Determinación del metacentro y del empuje; sección transversal rectangular de cuaderna

HM 150.39

Cuerpos flotantes para HM 150.06

Comparación de dos formas de cuaderna diferentes: cuaderna en forma de V y cuaderna en forma de U

HM 150.02

Calibración de instrumentos de medición de presión

Funcionamiento de un manómetro de Bourdon y de un manómetro de émbolo

HM 150.05 Presión hidrostática en líquidos

Presión del líquido en las paredes de recipientes

Descarga

Fundamentos de mecánica de fluidos

HM 250.06

Descarga libre

Determinar la trayectoria del chorro de agua y coeficiente de descarga para distintos perfiles de salida

Fundamentos de la mecánica de fluidos

Determinar la trayectoria del chorro de agua y coeficiente de descarga para distintos perfiles de salida

HM 150.09

Descarga horizontal por orificios

Registro de trayectoria del chorro de agua en velocidades de salida distintas

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.12

Descarga vertical por orificios

Determinación de pérdidas de carga y coeficiente de descarga para distintos perfiles de salida

de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

Fundamentos de mecánica de fluidos **Hidrodinámica**

HM 150.18

Ensayo de Osborne Reynolds

Visualización de flujo laminar y turbulento

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.07 Principio de Bernoulli

Presiones estáticas y distribución de la presión total a lo largo del tubo de Venturi

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.08

Medición de fuerzas ejercidas por un chorro

Demostración del principio del momento lineal; deflectores intercambiables con distintos ángulos de desviación

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.21

Visualización de líneas de corriente en canales abiertos

Flujo alrededor de distintos cuerpos de resistencia y flujo incidente de vertederos; tinta como producto de contraste

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos



HM 150.10

Visualización de líneas de corriente

Estudio de modelos en un flujo laminar bidimensional; tinta como prodcuto de contraste

Se recomienda parasuministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150

Módulo básico para ensayos sobre mecánica de fluidos

Medición volumétrica del caudal (caudales grandes y pequeños)

HM 250

Fundamentos de la mecánica de fluidos

Módulo básico para ensayos sobre mecánica de fluidos, control de instalación mediante PLC

HM 250.03

Visualización de líneas de corriente

Estudio de los cambios en la sección transversal del flujo laminar bidimensional; visualización con ayuda de burbujas de hidrógeno generadas electrolíticamente

HM 250.04

Ecuación de continuidad Relación entre el área de la secció

HM 250.07 Principio de Bernoulli

Presiones estáticas y distribución de la presión total a lo largo del tubo de Venturi

HM 250.05

Medición de fuerzas ejercidas por un chorro

Demostración del principio del momento lineal; deflectores intercambiables con distintos ángulos de desviación

Fundamentos de mecánica de fluidos Flujos en tuberías

HM 250.01

Visualización de flujos en tuberías

Visualización de flujo laminar y turbulento

HM 250.09

Fundamentos de la fricción de tubo

Fricción de tubo en un flujo laminar/turbulento, número de Reynolds y del coeficiente de fricción de tubo

HM 250.02

Medición del perfil de flujo

HM 250.08

Pérdidas en elementos de tuberías

Influencia de la velocidad de flujo en la pérdida de presión, secciones de tubería didácticamente sucesivas

HM 250.10

Desarrollo de presión a lo largo de la sección de entrada

HM 150.01

Fricción de tubo en un flujo laminar / turbulento

Determinación del número de Reynolds crítico

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.11

Pérdidas de carga en el sistema de tuberías

Influencia de la velocidad de flujo en la pérdida de presión

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 164

Flujo en canales abiertos y cerrados

Procesos de flujo en diferentes estructuras de control; pérdidas en la entrada y salida

HM 111 Redes de tuberías

Pérdidas de carga en distintos elemen tos de tuberías y redes de tuberías; conexión en serie y en paralelo de secciones de tubo

Fundamentos de mecánica de fluidos Flujos no estacionarios

HM 156

Golpes de ariete y chimenea de equilibrio

Estudio de creación, efecto y funcionamiento

HM 143

Procesos de desagüe no estacionarios en depósitos

Demostración del funcionamiento de un depósito de retención pluvial y un embalse

Fundamentos de mecánica de fluidos **Turbomáguinas**

HM 150.19

Principio de funcionamiento de una turbina Pelton

Modelo de una turbina de impulsión con tobera ajustable; determinación del rendimiento

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.20

Principio de funcionamiento de una turbina Francis

Modelo de una turbina de reacción con álabes distribuidores ajustables; determinación del rendimiento

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.04

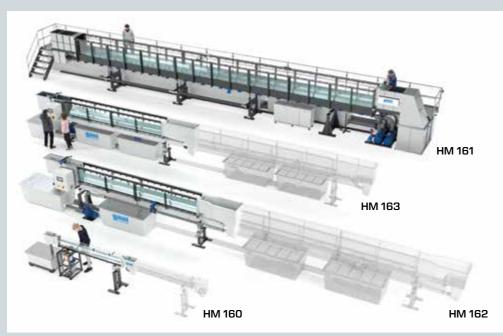
Bomba centrífuga

Registro de una característica típica de una bomba

HM 150 Módulo básico para ensayos sobre mecánica de fluidos necesario

HM 150.16

Conexión en serie y en paralelo de bombas


Curvas características y potencia hidráulica; comparación de los modos de funcionamiento

Se recomienda para suministro de agua: HM 150 Módulo básico para ensayos sobre mecánica de fluidos

Ingeniería hidráulica
Flujo en canales abiertos

Los canales de ensayo GUNT con su gran variedad de accesorios ofrecen un amplio espectro de ensayos y demostraciones sobre los temas: canales abiertos, aguas corrientes, ingeniería hidráulica y protección

Además de nuestras variantes estándar, en GUNT ofrecemos innovadores canales de ensayo personalizados según los requisitos del cliente y adaptados a las instalaciones.

Todos los canales de ensayo GUNT

HM 160

Canal de ensayo 86 x 300 mm

Sección de ensayo suministrable en longitudes de 2,5m ó 5m, circuito de agua cerrado, ajuste de la inclinación

HM 162/163

Experimental flume

Secciones de ensayo suministrables en longitudes de 5m, 7,5m, 10m ó 12,5m, circuito de agua cerrado, ajuste de la inclinación

Sección transversal de flujo AnxAl: 309 x 450 mm (HM 162) / 409x500mm (HM163)

HM 161

Canal de ensayo 600x800mm

Sección de ensayo de 16 m de largo, circuito de agua cerrado, ajuste de la inclinación

HM 250.11

Canal abierto

Flujo alrededor de varios cuerpos de resistencia y flujo incidente de presas

HM 250

Fundamentos de la mecánica de fluidos

Módulo básico para ensayos sobre mecánica de fluidos, control de instalación mediante PLC

Ingeniería hidráulica

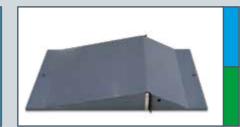
Modelos para los canales de ensayo GUNT

HM 162.29 Compuerta plana

HM 162.40 Compuerta de segmento

HM 162.36 Vertedero de sifón

HM162.32 Presa-vertedero de perfil Ogee con dos tipos de salidas HM162.35 Elementos para la disipación de energía



HM 162.38 Rejilla

HM 162.31 Vertedero de cresta ancha

HM 162.33 Vertedero Crump

HM 162.34 Presa-vertedero de perfil Ogee con medición de la presión

HM 162.30 Juego de vertederos de cresta delgada, cuatro tipos

HM 162.63 Canal trapezoidal

HM 162.44 Umbral

HM 162.51 Canal de Venturi

HM 162.45 Obra de paso

HM 162.71 Circuito cerrado de sedimentos

HM 162.55 Canal Parshall

HM 162.61 Pilotes vibratorios

HM 162.80 Juego de playas

Gracias a una amplia selección de modelos característicos, se puede diseñar un programa de ensayos amplio e individual con un canal de ensayo GUNT.

El programa de ensayos, que se presenta en esta página para HM 162 es

aplicable, en principio, a todos los canales de ensayo GUNT.

Los modelos de los otros canales de ensayo GUNT son similares.

HM 162.41 Generador de olas

HM162.72 Trampa de sedimentos

HM162.73 Alimentador de sedimentos

Estructuras de control

Modificaciones en la sección transversal (pérdidas, ecuaciones de flujo)

Medición de la descarga

Otros ensayos: entre otros, olas, transporte de sedimentos

> Los instrumentos adecuados para la medición de la profundidad de descarga y velocidad de flujo están disponibles como accesorios adicionales.

Ingeniería hidráulica

Instrumentos de medición para los canales de ensayo GUNT

HM 160

HM 160.52 Inc	dicador del ni	vel de agua
---------------	----------------	-------------

HM 160.64 Velocímetro

HM 160.53 Diez tubos manométricos

vel de agua digital
el de agua digita

HM 160.50 Tubo de Pitot estático

HM 161

HM 161.52	Indicador del nivel de agua
-----------	-----------------------------

HM 161.64 Velocímetro

HM 161.53 20 tubos manométricos

HM 161.59 Portainstrumentos

HM 161.82 Portainstrumentos para sistema PIV

HM 161.91	Indicador del nivel de agua digital
HM 161.50	Tubo de Pitot estático
HM 161.13	Medición de presión electrónica
HM 161.81	Sistema PIV

HM 161.83 Corte de vidrio para sistema PIV

HM 162

HM 162.52 Indicador del nivel de agua

HM 162.64 Velocímetro

HM 162.53 Diez tubos manométricos

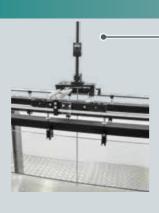
HM 162.59 Portainstrumentos

HM 162.82 Portainstrumentos para sistema PIV

HM 162.91	Indicador del nivel de agua digital
HM 162.50	Tubo de Pitot estático
HM 162.13	Medición de presión electrónica
HM 162.81	Sistema PIV
HM 162.83	Corte de vidrio para sistema PIV

HM 162.83	Corte de vidrio para sistema PIV

HM 163


HM 163.52 Indicador del nivel de agua

HM 163.64 Velocímetro

HM 163.53 Diez tubos manométricos

HM 163.59 Portainstrumentos

HM 163.82 Portainstrumentos para sistema PIV

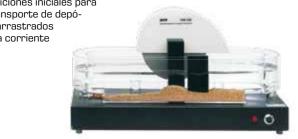
HM 163.91	Indicador del nivel de agua digital
HM 163.50	Tubo de Pitot estático
HM 162.13	Medición de presión electrónica
HM 163.81	Sistema PIV
HM 163.83	Corte de vidrio para sistema PIV

Ingeniería hidráulica

Otros accesorios para los canales de ensayo GUNT

HM 160.10	Elemento de prolongación del canal
	de ensayo

HM 160.19 Sistema UV para la desinfección



Ingeniería hidráulica Transporte de sedimentos

HM 166 Fundamentos del transporte de sedimentos

Condiciones iniciales para el transporte de depósito arrastrados por la corriente

HM 140 Transporte de sedimentos en canal abierto Observación de los lechos que se forman; visualización del flujo con producto de contraste

HM 142 Separación en tanques de sedimentación

Separación de sólidos y de líquidos en un tanque de sedimentación, visualización de las condiciones de flujo

HM 144 Formación de cursos de ríos

Canal de ensayo compacto para modelar pequeños cauces en el fondo; inclinación del canal de ensay

o ajustable

HM 168

Transporte de sedimentos en cursos de ríos

Ingeniería hidráulica Flujo de filtración

HM 152

Flujo potencial

Visualización de líneas de corriente en una célula Hele-Shaw; tinta como producto de contraste

HM 167

Flujos de agua subterránea

Estudios tridimensionales; demostración de descenso del nivel del agua subterránea; estudio de excavaciones

CE 116

Filtración de torta y de lecho profundo

Fundamentos de la filtración: ecuación de Darcy

HM 165 Estudios hidrológicos

Estudio de las relaciones entre precipitaciones y descarga, comportamiento de acumulación de suelos, flujos de infiltración y flujos subterráneos

HM 145

Estudios hidrológicos ampliados

Flujos de infiltración y subterráneos en el suelo; transporte de sedimentos y obstáculos en aguas corrientes

HM 141

Hidrogramas después de la precipitación

Relación entre precipitaciones y filtración; diversos métodos de drenaje

HM 169

Visualización de corrientes de infiltración

Determinación gráfica de redes de flujo; estudio de presión de agua en estructuras

5 Ingeniería de procesos

Ingeniería de las operaciones básicas mecánicas

Métodos de separación: clasificación y segregación separación por gravedad separación por centrifugación filtración	220 221 222 222
Trituración	223
Mezclado y aglomeración	224
Almacenamiento y flujo de materiales a granel	224
Lechos fluidizados y transporte neumático	225

Ingeniería de procesos térmicos

226
227
228
229
230
230

Ingeniería de procesos químicos

Activación térmica	231
Activación catalítica y fotoquímica	232

Ingeniería de procesos biológicos

Procesos aerobios	233
Procesos anaerobios	234

Plantas piloto

Mantenimiento	
Industria del petróleo y el gas	238
Industria química	240
Industria de las centrales eléctricas	241

Ingeniería de procesos

Ingeniería de las operaciones básicas mecánicas

Métodos de separación: clasificación y segreg Métodos de separación: clasificación y segregación

MT 174 Planta de clasificación

Mantenimiento preventivo basado en el ejemplo de un proceso de separación, control de instalación mediante PLC

Separación neumática

Separador de pliegues para separar mezclas de sólidos

CE 280

Separación magnética

Segregación con un separador magnético de tambor

Métodos de separación: separación por gravedad

HM 142

Separación en tanques de sedimentación

Separación de sólidos y de líquidos en un tanque de sedimentación, visualización de las condiciones de flujo

CE 115

Fundamentos de la sedimentación

Separación de suspensiones por sedimentación

CE 588

Demostración de la flotación por aire disuelto

Demostración de la flotación por aire disuelto

CE 587

Flotación por aire disuelto

Eliminación de sustancias sólidas de un agua bruta con flotación por aire disuelto

Ingeniería de las operaciones básicas mecánicas **Métodos de separación: separación por centrifugación**

CE 282

Centrifugadora de platos cónicos

Separación continua de emulsiones

CE 225 Hidrociclón

Separación de sustancias sólidas contenidas en líquidos mediante

CE 235 Ciclón de gases

Separación de sólidos contenidos en gases por medio de un ciclón

Ingeniería de las operaciones básicas mecánicas **Métodos de separación: filtración**

CE 116

Filtración de torta y de lecho profundo

Fundamentos de la filtración: ecuación de Darcy

CE 117 Fluio a través de es

Flujo a través de estratos de partículas

Estudio de las propiedades de lechos fijos y fluidizados atravesados por líquidos

CE 287

Filtro-prensa de placas y marcos

Filtración de torta discontinua para la separación de sólidos contenidos en suspensiones

CE 283

Filtro de tambor

Filtración de torta continua para la separación de sólidos de suspensiones

CE 284

Filtro a vacío tipo nutcha

Filtración de torta discontinua mediante depresión

CE 286

Filtro a presión tipo nutcha

Filtración de torta discontinua mediante sobrepresión

CE 285

Generador de suspensiones

Unidad auxiliar para los bancos de ensayos de filtración CE 284 y CE 286

CE 579

Filtración de lecho profunda

Demostración de filtración de lecho profunda y lavado en sentido inverso de filtros

Ingeniería de las operaciones básicas mecánicas **Trituración**

CE 245

Molino de bolas

Observación del proceso de molienda: trituración de sólidos

CE 264

Tamizadora

Equipo de análisis profesional para CE 245 y CE 275; determinación de las distribuciones del tamaño de las partículas

<mark>222</mark>

Ingeniería de las operaciones básicas mecánicas

Mezclado y aglomeración

CE 320 Agitación

Visualización de campos de velocidades al utilizar distintos agitadores

CE 322Reología y calidad de mezcla en un depósito de agitación

Agitador con medición directa del par para determinar las curva de rendimiento

CE 255

Aglomeración por rodadura

Disco granulador de número de revoluciones regulable y ángulo de inclinación variable

Ingeniería de las operaciones básicas mecánicas Almacenamiento y flujo de materiales a granel

CE 210

Descarga de material a granel de silos

Influencia del material y de la inclinación de paredes de la tolva en el perfil de fluencia y el tiempo de descarga

CE 200

Propiedades de fluidez de materiales a granel

Registro de las curvas de fuerza de cizallamiento de materiales a granel con un aparato de cizalla anular; fundamento para el diseño de silos

Ingeniería de las operaciones básicas mecánicas Lechos fluidizados y transporte neumático

CE 220

Formación de lecho fluidizado

Estudio de la formación de lechos fluidizados de sólidos en aire y agua

CE 250

Transporte neumático

Transporte neumático a presión de sólidos, en sentido ascendente en una sección de tubo vertical transparente

CE 222

Comparación de lechos fluidizados

Dos columnas transparentes de diferentes diámetros para observar la formación de lechos fluidizados en gases

224 25

Ingeniería de procesos térmicos Secado y evaporación

CE 715

Evaporación en película ascendente

Concentración de soluciones sensibles a la temperatura

CE 130

Secado por convección

Curvas de secado para sólidos granulares

Destilación/rectificación

CE 600

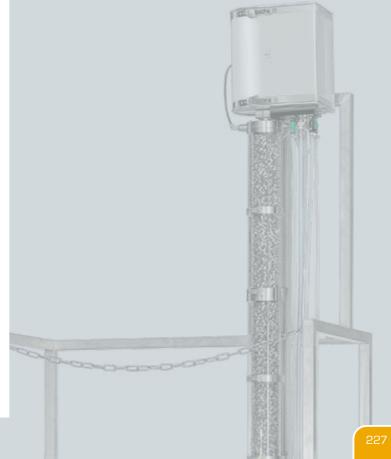
Rectificación continua

Rectificación continua y discontinua con columna de relleno, columna de platos perforados y columna de platos de campanas, control de instalación mediante PLC

CE 602

Rectificación discontinua

Comparación de columnas de relleno y platos perforados durante la rectificación



CE 610 Comparación de columnas de rectificación

Rectificación continua controlada por PLC con columnas de relleno y platos perforados

Absorción y adsorción

Absorción de gases

Separación de una mezcla de dióxido de carbono y aire por absorción en contracorriente

Absorción de película descendente

Separación del oxígeno de una corriente de aire por medio de absorción en una columna de película descendente

CE 540

Secado del aire por adsorción

Principio básico de la adsorción y la desorción

CE 583 Adsorción

Adsorción de sustancias disueltas en carbón activo

Cristalización y procesos de separación mediante membranas

CE 520

Cristalización por enfriamiento

Crecimiento cristalino en un lecho fluidizado

CE 530

Ósmosis inversa

Proceso de separación mediante membranas para recuperar el disolvente de una solución salina, control de instalación mediante PLC

Ingeniería de procesos térmicos Extracción

CE 620

Extracción líquido-líquido

Separación de una mezcla líquida de dos componentes mediante extracción en flujo a contracorriente con un disolvente

CE 630

Extracción sólido-líquido

Extracción continua y discontinua de los componentes solubles de una mezcla sólida

Ingeniería de procesos térmicos Transferencia de masa

CE 110

Difusión en líquidos y gases

Activación térmica

CE 310

Unidad de alimentación de reactores químicos

Aparato básico para el estudio y la comparación de diversos reactores en una reacción de saponificación

CE 310.01

Reactor continuo de mezcla perfecta

Depósito para servicio de reacción continuo o por lotes con agitador, cambiador de calor y rebose

CE 310.02 Reactor tubular

Serpentín como tubo

de reacción en un baño María para una reacción continua

CE 310.03

Reactores continuos de mezcla perfecta en serie

Conexión en serie de tres reactores de mezcla perfecta

CE 310.04

Reactor discontinuo de mezcla perfecta

Depósitos Dewar con agitador e intercambiador de calor para reacciones de saponificación isotérmicas

CE 310.05

Reactor de flujo émbolo

Reactor de flujo en tuberías en funcionamiento continuo; lecho sólido de bolas de vidrio

CE 310.06 Reactor de flujo laminar

Reactor de flujo en tuberías en funcionamiento continuo

CE 100 Reactor tubular

Demostración de la influencia de temperatura y tiempo de reacción sobre la reacción de saponificación alcalina

Ingeniería de procesos químicos Activación catalítica y fotoquímica

CE 380

Reactores catáliticos de lecho fijo

Estudio de reacciones catalíticas

CE 380.01

Análisis por inyección en flujo

Analizador profesional para CE 380: detección de glucosa

CE 584

Oxidación avanzada

Oxidación de sustancias orgánicas con peróxido de hidrógeno y

CE 650

Planta de biodiésel

Transesterificación química de aceites vegetales, control de instalación mediante PLC

Ingeniería de procesos biológicos

Procesos aerobios

CE 701

Proceso de biopelícula

Tratamiento del agua biológico aerobio con el proceso de biopelícula: filtro perdolador

CE 730

Reactor airlift

CE 704

Proceso SBR

Reactor biológico

CE 705

Proceso de lodos activados

Estación depuradora de aguas residuales a escala de laboratorio: biodegradación aerobia de sustancias orgánicas, control de instalación mediante PLC

Procesos anaerobios

CE 702

Tratamiento anaerobio de aguas

Degradación anaerobia de sustancias orgánicas en un depósito de agitación y un reactor UASB para la generación de biogás

CE 640

Producción biotecnológica de etanol

Conversión discontinua de materias primas biológicas con contenido de almidón en etanol, control de instalación mediante PLC

CE 642

Planta de biogás

Biodegradación continua de dos etapas de sustancias orgánicas. Primera etapa: la hidrólisis y la acidificación, segunda etapa: biodegradación anaerobia, control de instalación mediante PLC

¡Entonces benefíciese de nuestros conocimientos y nuestra experiencia! Nuestros ingenieros planifican laboratorios completos con todo el equipamiento incluido. Nos ocupamos de sus ideas individuales y tomamos en consideración todo el entorno local específico:

- dibujos de la sala
- conexiones de alimentación
- listas de equipamiento
- descripción de prestaciones, etc.

En caso de preguntas, nuestro servicio externo o servicio de atención al cliente le ayudará con mucho gusto.

Plantas piloto Mantenimiento

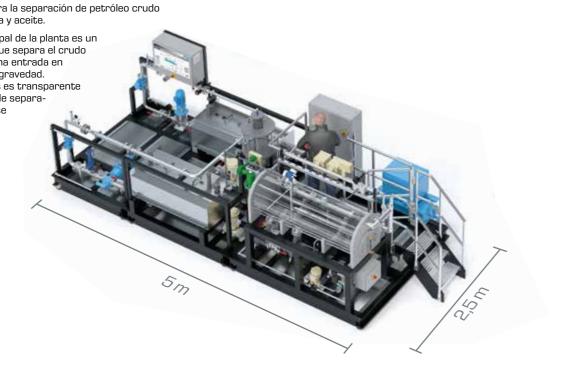
MMTS Mechanical Maintenance Training Skid La planta de formación MMTS se utiliza para el mantenimiento de componentes mecánicos, así como para la medición, el control y la regulación de diversos parámetros en un sistema de tuberías con varios medios. En aplicaciones reales, estos sistemas pueden encontrarse en centrales eléctricas, así como en plantas de procesamiento de petróleo y gas natural.

MPTR Main Process Training Rig El equipo de ensayo y entrenamiento MPTR se basa por completo en tecnologías industriales. Representa una tarea de proyecto compleja para la formación de ingenieros de tuberías y plantas, así como para técnicos de mantenimiento. En estas instalaciones pueden tratarse temas mecánicos, eléctricos e hidráulicos.

Industria del petróleo y el gas

PPT

Process Pump Trainer

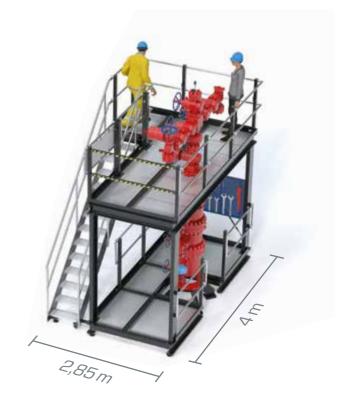

En la industria petrolera, el petróleo crudo se extrae de un pozo y luego se bombea para su posterior procesamiento. En el sistema de entrenamiento de bombas de proceso (PPT), tres tipos diferentes de bombas funcionan y se comparan en distintos modos. El medio de trabajo es una mezcla de aire, agua y petróleo para simular el crudo. Para controlar la planta se utiliza el sistema de control de procesos DeltaV de Emerson Electric Co. Este sistema de automatización es muy fácil de usar y se utiliza ampliamente en las industrias de procesos y energía. DeltaV dispone de modernas funciones de control y permite al operador un control óptimo de la planta en todo momento.

7,5 m

Phase Separation Trainer

Esta planta demuestra la separación de petróleo crudo simulado en aire, agua y aceite.

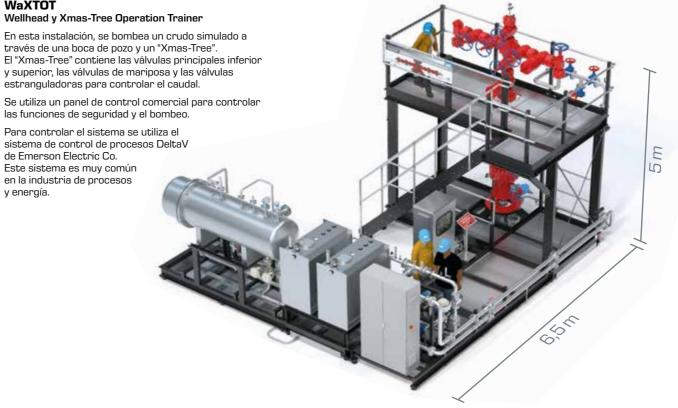
WaXTMT


Wellhead y Xmas-Tree Maintenance Trainer

En la industria petrolera, el petróleo crudo se extrae de un pozo y luego se bombea para su posterior procesamiento.

Como interfaz entre el equipo de perforación y el de producción, se instala un cabezal de pozo en la parte superior del pozo petrolífero. Conectada a la boca del pozo hay una cruz de erupción (Xmas-Tree) con válvulas, bobinas y accesorios para el procesamiento del petróleo.

El equipo se utiliza para montar y desmontar la cabeza de pozo y la cruz de erupción. No se bombean fluidos a través del entrenador. Se incluyen las herramientas necesarias para el trabajo.


WaXTOT

Wellhead y Xmas-Tree Operation Trainer

En esta instalación, se bombea un crudo simulado a través de una boca de pozo y un "Xmas-Tree". El "Xmas-Tree" contiene las válvulas principales inferior y superior, las válvulas de mariposa y las válvulas estranguladoras para controlar el caudal.

Se utiliza un panel de control comercial para controlar las funciones de seguridad y el bombeo.

sistema de control de procesos DeltaV de Emerson Electric Co. Este sistema es muy común en la industria de procesos y energía.

Plantas piloto Industria química

Integrated Pilot Plant Esta planta de muestra el funcionamiento de una planta de ingeniería de procesos con una mezcla de agua y etilenglical como medio principal. La planta combina componentes de procesos de ciclo convencional con depósitos, intercambiadores de calor, bombas y secciones de refrigeración, así como control y regulación con un proceso de destilación. Esta planta se centra en la puesta en marcha, el funcionamiento, la desactivación y el mantanimiento de un proceso tipico de ingeniería de procesos a escala industrial.

Plantas piloto Industria de las centrales eléctricas

ET 805 Central térmica de vapor de 20kW con sistema de control de proceso Turbina de vapor con alternador síncrono para funcionamiento en red o en isla; completamente equipado con caldera de vapor calentada por aceite/ gas, condensador, torre de refrigeración y tratamiento del agua de alimentación; dispositivo de sincronización

La central térmica de vapor ET 805 ha sido concebida especialmente para la formación y práctica en el área de la tecnología de las centrales eléctricas con sistema de control de procesos.

Debido al tamaño y complejidad de la central, el comportamiento funcional corresponde, en muchos aspectos, al de las grandes instalaciones reales, permitiendo una formación orientada a la práctica. Con esta planta se pueden estudiar todas las propiedades relevantes de una central eléctrica de turbina de vapor.

El sistema integrado de control de procesos permite a los estudiantes practicar el funcionamiento de una central eléctrica automatizada. Todas las variables importantes para el proceso se muestran claramente en diagramas de proceso y se convierten en valores característicos.

240

6 | 2E Energy & Environment

Energy

Energía solar • fotovoltaica 244 • energía térmica solar 245 • refrigeración solar 246 Energía geotermia • cambiadores de calor 247 • geotermia cerca de la superficie 248

▶ geotermia de alta profundidad

Karagia eólica

fundamentos de ingeniería de energía eólica 250
 ingeniería de aplicación en centrales eólicas 252

*	Energía hidráulica y energía marina	254
L	Biomasa	256

Sistemas de energía

almacenamientos en sistemas de energíatransformación en sistemas de energía

Eficiencia energética en edificaciones

comercio y la industria	260
suministro de calor y climatización	26
▶ integración de energías renovables	263

Environment

Ħ	Aire	
	purificación de aire de residuos mecánica	269
	purificación de aire de residuos térmica	26

Agua

▶ tratamiento mecánico de aguas	266
▶ tratamiento biológico de aguas	267
▶ tratamiento fisico/químico de aguas	268
tratamiento multietana de aguas	269

골 Suelo

249

▶ hidrogeología	270
▶ tratamiento de suelos	270

Residuos

trituración 2	procesos de separación	27
	▶ trituración	2/

Energy ▼

Environment

Energía solar: fotovoltaica

ET 252 Medición en células solares

Estudio de las propiedades de las células solares; mediciones objetivas mediante el control de temperatura de las células solares

ET 250

Medición en módulos solares

Determinación de las características de una planta fotovoltaica

ET 250.01

Energía solar fotovoltaica para funcionamiento en paralelo a la red

Módulo de ampliación para la ET 250 con componentes para la alimentación de corriente solar fotovoltaica a una red pública

ET 250.02

Energía solar fotovoltaica para funcionamiento en isla

Módulo de ampliación para la ET 250 con componentes para el uso independiente de la electricidad de los módulos solares

ET 255

Opciones de operación de los sistemas modulares de energía fotovoltaica

Componentes eléctricos de una instalación fotovoltaica en la práctica; funcionamiento con módulos fotovoltaicos reales o con un simulador fotovoltaico

ET 255.01

Simulador fotovoltaico

Simulación de las características de corriente y tensión de módulos fotovoltaicos

ET 255.02

Módulos fotovoltaicos para el sistema de energía fotovoltaica

Comportamiento de funcionamiento de módulos fotovoltaicos con temperatura e iluminancia variables; iluminación por luz solar o fuente de luz HL 313.01

Consumidores en sistemas de energía fotovoltaica

Cargas eléctricas controlables para simulación de utilización en sistemas de energía fotovoltaica

Energy

Energía solar: energía térmica solar

ET 202

Fundamentos de la energía térmica

Determinación de los parámetros característicos de una planta térmica solar; modelo con fuente de radiación artificial

ET 202.01

Colector cilindro parabólico

Funcionamiento y comportamiento operativo de un colector cilindro-parabólico, accesorio para ET 202

ET 203

Colector de cilindro parabólico con seguimiento del sol

Función y comportamiento de funcionamiento de un colector cilíndrico parabólico, seguimiento solar astronómico y basado en sensores, control de instalación mediante PLC

HL 320.03 Colector plano

Colector plano orientable para la transformación de energía solar en calor

WL 377

Convección y radiación

Transferencia de calor entre el elemento calefactor y la pared del depósito por convección y radiación

HL 313

Calentamiento de agua sanitaria con colector plano

Transformación de la energía de radiación solar en calor y almacenamiento del calor

HL 314

Calentamiento de agua sanitaria con colector tubular

Familiarizarse con el funcionamiento del colector tubular de vacío y el circuito solar

Operar el regulador solar a través del navegador web

HL 320.04

Colector tubular de vacío

Transformación de energía solar en calor en el colector tubular de vacío

HL 320.05 Módulo de acu-

mulación central con regulador

Módulo con acumulador intermedio y acumulador bivalente para sistemas de calefacción con energías renovables, operar el regulador de calefac-

ción a través de pantalla táctil o navegador web

Energía solar: refrigeración solar

Refrigeración con energía fotovoltaica

Instalación frigorífica de compresión para el funcionamiento con energía eléctrica solar de ET 250

ET 352.01 Refrigeración solar térmica

Funcionamiento térmico solar de un compresor de chorro de vapor

Compresor de chorro de vapor en la refrigeración

Generación de frío con ayuda de energía térmica; un condensador y un evaporador transparente permiten ver los procesos internos

HL 313

Calentamiento de agua sanitaria con colector plano

Transformación de la energía de radiación solar en calor y almacenamiento del calor, operar el regulador solar a través del navegador web

HL 314

Calentamiento de agua sanitaria con colector tubular

Familiarizarse con el funcionamiento del colector tubular de vacío y el circuito solar, operar el regulador solar a través del navegador web

Energy
Energía geotermia: cambiadores de calor

WL 110

Unidad de alimentación para cambiadores de calor

Medición de las propiedades de transferencia

de cinco diferentes modelos de cambiadores de calor, control de instalación mediante PLC

WL 110.02

Cambiador de calor de placas

Cambiador de calor de placas típico con funcionamiento con flujos paralelos o flujos a contracorriente

WL 110.01

Cambiador de calor de tubos concéntricos

Cambiador de calor transparente con un punto de medición de temperatura adicional en la mitad del tramo de ensayos; funcionamiento con

flujos paralelos o flujos a contraco-

WL 110.04

Depósito de agitación con doble camisa y serpentín

Calentamiento por camisa o por serpentín; mecanismo de agitación para mezclar mejor el fluido

WL 110.03

Cambiador de calor de carcasa y tubos

Cambiador de calor transparente con funcionamiento con flujos paralelos cruzados o flujos a contracorriente cruzados

WL 110.05

Cambiador de calor de tubos de aletas Transferencia de calor

funcionamiento de flujo cruzado

WL 315C

Comparación entre diferentes cambiadores de calor

Comparación de cambiador de calor de placas, cambiador de calor de tubos concéntricos, cambiador de calor de carcasa y tubos, cambiador de calor de tubos de aletas y depósito de agitación con doble camisa y serpentín

Energía geotermia: geotermia cerca de la superficie

ET 101

Circuito de refrigeración por compresión sencillo

Enfriamiento y calentamiento de los cambiadores de calor directamente palpable

Sonda geotérmica con principio heatpipe

Componentes transparentes permiten observar el cambio de estado del medio portador de

ET 264

Utilización de la geotermia con sistema de dos pozos

Utilización de la geotermia en circuito abierto sin repercusión térmica

HL 320.01

Bomba de calor

Bomba de calor para el funcionamiento con diferentes fuentes, operar el regulador de calefacción a través de pantalla táctil o navegador web

HL 320.07

Calefacción de suelo/ absorbedor geotérmico

Aprovechamiento posible como disipador de calor o fuente de calor

HL 320.08

Calefacción soplante/ cambiador de calor de aire

Aprovechamiento posible como disipador de calor o fuente de calor

Energy

Energía geotermia: geotermia de alta profundidad

ET 851

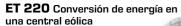
Turbina de vapor axial

Turbina de vapor de una etapa con medición de potencia; suministro de vapor vía ET 850, calentado por gas o ET 852, eléctrico

ET 852

Generador de vapor eléctrico

Generador de vapor eléctrico a escala de laboratorio para vapor sobrecalentado; condensador integrado; alternativa al generador de vapor calentado por gas ET 850 para la alimentación de la turbina de vapor ET 851



Energía eólica:

Energia eolica: fundamentos de ingeniería de energía eólica

Conversión de energía cinética del viento en energía eléctrica

ET 220.10

Equipo de mando para central eólica ET 220.01

Utilización de la energía del viento en funcionamiento en isla bajo condiciones meteorológicas reales

ET 210

Fundamentos de las centrales eólicas

Central eólica con mecanismo de variación del paso y ajuste de la guiñada

Túnel de viento para la visualización de líneas de corriente

Tramo de ensayos iluminado, diversos modelos, generador de niebla incluido

HM 170

Túnel de viento abierto

Ensayos en las áreas de la aerodinámica y mecánica de fluidos con un túnel de viento del tipo "Eiffel"

HM 170.70

Central eólica con variación del paso

Expansión de túnel de viento HM 170

HM 170.05

Cuerpo de resistencia placa cuadrada

HM 170.09

Cuerpo de sustentación superficie sustentadora NACA 0015

HM 170.22

Distribución de la presión en una superficie sustentadora NACA 0015

Ensayos con diferentes ángulos de ataque del perfil de la superficie sustentadora

Energía eólica: ingeniería de aplicación en centrales eólicas

GL 210

Comportamiento dinámico del engranaje recto multietapa

Estudio dinámico de un engranaje cilíndrico de una, dos o tres etapas con inercias de giro distribuidas

GL 212

Comportamiento dinámico del engranaje planetario multietapa

Estudio dinámico de un engranaje de dos etapas, cada cual con tres ruedas planetarias; cuatro diferentes transmisiones ajustables

Comportamiento de funcionamiento de central eólica

Características y control de una cadena cinemática de energía eólica

ET 222

Cadena cinemática de energía eólica

Ensayos sobre la conversión de energía de rotación en energía eléctrica

PT 500.11

Kit de árbol con fisura

Comportamiento de vibración del árbol con una grieta radial

PT 500.12

Kit de defectos en rodamientos

Evaluación del estado de los rodamientos a través de un análisis de vibraciones

PT 500.15 Kit de defectos en engranajes

Análisis de vibraciones causadas por defectos en engranajes

PT 500.19

Kit de vibraciones electromecánicas

Interacción del sistema electromagnéticomecánico

PT 500

Sistema de diagnóstico de máquinas, unidad básica

Unidad básica para realizar varios ensayos relacionados con el diagnóstico de máquinas, utilizando kits de accesorios modulares

AT 200

Determinar la eficiencia de engranajes

Dispositivo de ensayo para determinar la potencia de accionamiento y frenado mecánica de un engranaje recto o de un engranaje helicoidal


Energía hidráulica y energía marina

HM 150.19

Principio de funcionamiento de una turbina Pelton

Modelo de una turbina de impulsión con tobera ajustable; determinación del rendimiento

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

HM 150.20

Principio de funcionamiento de una turbina Francis

Modelo de una turbina de reacción con álabes distribuidores ajustables; determinación del rendimiento

Se recomienda para suministro de agua: HM150 Módulo básico para ensayos sobre mecánica de fluidos

HM 365.31

Turbina Pelton y turbina Francis

Comparación entre turbinas de acción y de reacción

Suministro de agua para HM 365.31

Banco de ensayos para turbinas con la unidad básica HM 365.32, turbina Pelton HM 365.31 y unidad de frenado HM 365

HM 421 Banco de ensayos turbina de hélice

Turbina de hélice con cuatro álabes móviles, distribuidor con álabes orientables para el ajuste de la potencia

HM 430C Banco de ensayos turbina Francis

Variables características de una turbina Francis potente con álabes distribuidores ajustables

HM 450C

Variables características de turbomáquinas hidráulicas

Determinación de la potencia y el rendimiento de turbinas y bombas; demostración de una central de acumulación por bombeo

HM 450.01

Turbina Pelton

Modelo de una turbina de chorro con medición de número de revoluciones y par

HM 450.02 Turbina Francis

Modelo de una turbina de reacción con medición de número de revoluciones y par; álabes orientables

HM 450.03

Turbina de hélice

Turbina de hélice de seis álabes móviles, distribuidor con álabes orientables para el ajuste de la potencia, determinación de número de revoluciones y par

HM 450.04 Turbina Kaplan

Turbina Kaplan de cinco álabes móviles ajustables y distribuidor con álabes distribuidores ajustables para el ajuste de la potencia, determinación de número de

revoluciones y par

ET 270

Central undimotriz

Unidad de turbina con turbina Wells y generador; generador de olas configurable

CE 640

Producción biotecnológica de etanol

Conversión discontinua de materias primas biológicas con contenido de almidón en etanol, control de instalación mediante PLC

CE 642

segunda etapa: biodegradación anaerobia,

CE 650

Planta de biodiésel

Transesterificación química de aceites vegetales, control de instalación mediante PLC

Energy Sistemas de energía: almacenamientos en sistemas de energía

ET 513

Compresor de émbolo de una etapa

Estudios en un compresor de aire con determinación de la potencia mecánica absorbida

HM 365

Unidad universal de accionamiento y frenado

Unidad de frenado y accionamiento para la conexión de diversas máquinas motrices o máquina generatriz

ET 255

Opciones de operación de los sistemas modulares de energía fotovol-

Componentes eléctricos de una instalación fotovoltaica en la práctica; funcionamiento con módulos fotovoltaicos reales o con un simulador fotovoltaico

HM 143

Procesos de desagüe no estacionarios en depósitos de reserva

Demostración del funcionamiento de un depósito de retención pluvial y un embalse

ET 420

Acumuladores de hielo en la refrigeración

Instalación frigorífica industrial con acumulador de hielo, torre de refrigeración en seco y torre de refrigeración por vía húmeda

Sistemas de energía: almacenamientos en sistemas de energía

ET 220.10

Utilización de la energía del viento en funcionamiento en isla bajo condiciones meteorológicas reales

ET 220.01 Central eólica Conexión a ET 220 o ET 220.10; la instalación al aire libre permite realizar estudios ligados a la práctica

HL 320.03

Colector plano

Colector plano orientable para la transformación de energía solar en calor

HL 320.05

Módulo de acumulación central con regulador

Módulo con acumulador intermedio y acumulador bivalente para sistemas de calefacción con energías renovables, operar el regulador de calefacción a través de pantalla táctil o navegador web

Energy

Sistemas de energía: transformación en sistemas de energía

ET 292

Sistema de pila combustible

Pila combustible de membrana polimérica refrigerada por agua en cogeneración

ET 102 Bomba de calor

Aprovechamiento del calor ambiental para el calentamiento del agua

ET 794

Turbina de gas con turbina de potencia

Disposición de eje doble con turbina de alta presión y turbina de potencia; funcionamiento con gas licuado

HL 320.01

Bomba de calor

Bomba de calor para el funcionamiento con diferentes fuentes, operar el regulador de calefacción a través de pantalla táctil o navegador web

HL 320.07

Calefacción de suelo / absorbedor geotérmico

Aprovechamiento posible como disipador de calor o fuente de calor

HL 320.05

Módulo de acumulación central con regulador

Módulo con acumulador intermedio y acumulador bivalente para sistemas de calefacción con energías renovables, operar el regulador de calefacción a través de pantalla táctil o navegador web

HL 320.08

Calefacción soplante/ cambiador de calor de aire

Aprovechamiento posible como disipador de calor o fuente de calor

Eficiencia energética en edificaciónes: comercio y la industria

ET 420

Acumuladores de hielo en la refrigeración

Instalación frigorífica industrial con acumulador de hielo, torre de refrigeración en seco y torre de refrigeración por vía húmeda

ET 428

Eficiencia energética en instalaciones frigoríficas

Instalación frigorífica con tres compresores funcionando en conjunto; adaptación a la potencia necesaria

RT 682

Regulación multivariable en un depósito de agitación

Depósito de agitación calentado con recuperación de calor como modelo: regulación acoplada de nivel y temperatura

RT 396

Banco de pruebas para bombas y robineterías

Registro de las curvas características de robineterías industriales y de una bomba centrífuga

Energy

Eficiencia energética en edificaciónes: suministro de calor y climatización

WL 376

Conductividad térmica de materiales para construcción

Estudio de las propiedades aislantes de típicos materiales de construcción

WL 110

Unidad de alimentación para cambiadores de calor

Medición de las propiedades de transferencia de cinco diferentes modelos de cambiadores de calor, control de instalación mediante PLC

WL 110.02

Cambiador de calor de placas

Cambiador de calor de placas típico con funcionamiento con flujos paralelos o flujos a contracorriente

WL 110.01

Cambiador de calor de tubos concéntricos

Cambiador de calor transparente con un punto de medición de temperatura adicional en la mitad del tramo de ensayos; funcionamiento con

o flujos a contracorriente

WL 110.04

Depósito de agitación con doble camisa y serpentín

Calentamiento por camisa o por serpentín; mecanismo de agitación para mezclar mejor el fluido

WL 110.03

Cambiador de calor de carcasa y tubos

Cambiador de calor transparente con funcionamiento con flujos paralelos cruzados o flujos a contracorriente cruzados

WL 110.05

Cambiador de calor de tubos de aletas Transferencia de calor entre el agua y el aire; funciona-

Eficiencia energética en edificaciónes: suministro de calor y climatización

HL 305

Banco de prácticas para compensación hidráulica de radiadores

Compensación hidráulica en una instalación de calefacción: tres ramales de calefacción con radiadores, válvulas termostáticas y bomba de circulación

HL 630

Eficiencia en la técnica de calefacción

Fundamentos de una calefacción por agua caliente; proceso de aprendizaje soportado por ordenador

ET 630

Acondicionador de aire de dos bloques

Acondicionador de aire moderno con función de bomba de calor: enfriar y calentar

HM 283

Ensayos en una bomba centrífuga

Determinación de valores característicos de una bomba

Energy

Eficiencia energética en edificaciónes: integración de energías renovables

HL 320.01

Bomba de calor

Bomba de calor para el funcionamiento con diferentes fuentes, operar el regulador de calefacción a través de pantalla táctil o navegador web

HL 320.02

Calefacción convencional

Calefacción adicional eléctrica para el sistema modular HL 320

HL 320.03

Colector plano

Colector plano orientable para la transformación de energía solar en calor

HL 320.04

Colector tubular de vacío

Transformación de energía solar en calor en el colector tubular de vacío

HL 320.05

Módulo de acumulación central con regulador

Módulo con acumulador intermedio y acumulador bivalente para sistemas de calefacción con energías renovables, operar el regulador de calefacción a través de pantalla táctil

HL 320.07

Calefacción de suelo/absorbedor geotérmico

Aprovechamiento posible como disipador de calor o fuente de calor

HL 320.08 Calefacción

soplante/cambiador de calor de aire

Aprovechamiento posible como disipador de calor o fuente de calor

El Programa 2E

os fundamentos

Aprender de la practica

Campos de **Aplicación**

- Energía Solar
- Energía Hidráulica/ Energía Marina
- Energía Eólica
- **■** Biomasa
- Sistemas de Energía
- Eficiencia Energética en la Ingeniería de Edificación

ENVIRONMENT

Fundamentos

- ► Ciencias Naturales (Física, Química
 - ▶ Transformación de Sustancias
 - ▶ Transporte de Sustancias
 - ▶ Proceso de Separación
 - ▶ Mecánica de Fluidos
 - ▶ Hidrogeología

Adquirir una vision de de la vision de la vi C. STEPHEN **EFICIENCIA** SOSTENIBILIDAD

Environment

Aire: purificación de aire de residuos mecánica

CE 235

Ciclón de gases

Separación de sólidos contenidos en gases por medio de un ciclón

Environment

Aire: purificación de aire de residuos térmica

CE 400

Absorción de gases

Separación de una mezcla de dióxido de carbono y aire por absorción en contracorriente

CE 540

Secado del aire por adsorción

Principio básico de la adsorción y la desorción

Environment

Agua: tratamiento mecánico de aguas

CE 587

Flotación por aire disuelto

Eliminación de sustancias sólidas de un agua bruta con flotación por aire disuelto

CE 579

Filtración de lecho profunda

Demostración de filtración de lecho profunda y lavado en sentido inverso de filtros

HM 142

Separación en tanques de sedimentación

Separación de sólidos y de líquidos en un tanque de sedimentación, visualización de las condiciones de flujo

CE 588

Demostración de la flotación por aire disuelto

Environment

Agua: tratamiento biológico de aguas

CE 705

Proceso de lodos activados

Estación depuradora de aguas residuales a escala de laboratorio: biodegradación aerobia de sustancias orgánicas, control de instalación mediante PLC

CE 701

Proceso de biopelícula

Tratamiento del agua biológico aerobio con el proceso de biopelícula: filtro perdolador

CE 702

Tratamiento anaerobio de aguas

Degradación anaerobia de sustancias orgánicas en un depósito de agi-tación y un reactor UASB para la generación de biogás

CE 730

Reactor airlift

Reactor sumergido aerobio

CE 704 Proceso SBR

Reactor biológico secuencial

Environment

Agua: tratamiento fisico/químico de aguas

CE 583 Adsorción

Adsorción de sustancias disueltas en carbón activo

CE 300

Intercambio iónico

Desendurecimiento y desalinización de agua por intercambio

CE 584

Oxidación avanzada

Oxidación de sustancias orgánicas con peróxido de hidrógeno y luz ultravioleta

CE 530

Ósmosis inversa

Proceso de separación mediante membranas para recuperar el disolvente de una solución salina, control de instalación

CE 586

Precipitación y floculación

Eliminación de sustancias disueltas por precipitación/floculación, sedimentación de los flóculos en el decantador lamelar

Environment

Agua: tratamiento multietapa de aguas

CE 581

Tratamiento de aguas: planta 1

Tres métodos básicos para el tratamiento del agua: filtración profunda, adsorción e intercambio iónico, control de instalación mediante PLC

CE 582

Tratamiento de aguas: planta 2 Dos métodos básicos para el tratamiento del agua: filtración profunda e intercambio iónico

Environment Suelo: hidrogeología

HM 165 Estudios hidrológicos

Estudio de las relaciones entre precipitaciones y descarga, comportamiento de acumulación de suelos, flujos de infiltración y flujos subterráneos

HM 141

Hidrogramas después de la precipitación

Relación entre precipitaciones y filtración; diversos métodos de drenaje

HM 167 Flujos de agua subterránea

Estudios tridimensionales; demostración de descenso del nivel del agua subterránea; estudio de excavaciones

HM 169

Visualización de corrientes de infiltración

Determinación gráfica de redes de flujo; estudio de presión de agua en estructuras

Environment

Suelo: tratamiento de suelos

CE 225

Hidrociclón

Separación de sustancias sólidas contenidas en líquidos mediante fuerza centrífuga

CE 630

Extracción sólido-líquido

Extracción continua y discontinua de los componentes solubles de una mezcla sólida

Environment Residuos: procesos de separación MT 174 Planta de clasificación Mantenimiento preventivo basado en el ejemplo de un proceso de separación, control de instalación mediante PLC

CE 275

Separación neumática

Separador de pliegues para separar mezclas de sólidos

CE 280

Separación magnética Segregación con un separador magnético de tambor

Environment Residuos: trituración

CE 245 Molino de bolas Observación del proceso de molienda: trituración de sólidos

Vista general de productos

ΛT		_
AT 200	Determinar la eficiencia de engranajes	35, 56, 253
AI EUU	Determinar la enciencia de engranajes	33, 30, 233
CE		_
CE 100	Reactor tubular	231
CE 105	Corrosión de metales	41
CE 110	Difusión en líquidos y gases	230
CE 115	Fundamentos de la sedimentación	221
CE 116	Filtración de torta y de lecho profundo	217, 222
CE 117	Flujo a través de estratos de partículas	222
CE 130	Secado por convección	226
CE 200	Propiedades de fluidez de materiales a granel	224
CE 210	Descarga de material a granel de silos	224
CE 220	Formación de lecho fluidizado	152, 225
CE 222	Comparación de lechos fluidizados	225
CE 225	Hidrociclón	222, 270
CE 235	Ciclón de gases	222, 265
CE 245	Molino de bolas	223, 271
CE 250	Transporte neumático	225
CE 255	•	225
CE 264	Aglomeración por rodadura Tamizadora	224
CE 271		
	Bomba de viaís retetivo de poletro	183
CE 272	Bomba de vacío rotativa de paletas	183
CE 275	Separación neumática	220, 271
CE 280	Separación magnética	220, 271
CE 282	Centrifugadora de platos cónicos	222
CE 283	Filtro de tambor	223
CE 284	Filtro a vacío tipo nutcha	223
CE 285	Generador de suspensiones	223
CE 286	Filtro a presión tipo nutcha	223
CE 287	Filtro-prensa de placas y marcos	223
CE 300	Intercambio iónico	268
CE 310	Unidad de alimentación de reactores químicos	231
CE 310.01	Reactor continuo de mezcla perfecta	231
	Reactor tubular	231
	Reactores continuos de mezcla perfecta en serie	231
	Reactor discontinuo de mezcla perfecta	231
	Reactor de flujo émbolo	231
CE 310.06		231
CE 320	Agitación	224
CE 322	Reología y calidad de mezcla en un depósito de agitación	224
CE 380	Reactores catáliticos de lecho fijo	232
CE 380.01	Análisis por inyección en flujo	232
CE 400	Absorción de gases	228, 265
CE 405	Absorción de película descendente	228
CE 520	Cristalización por enfriamiento	229
CE 530	Ósmosis inversa	229, 268
CE 540	Secado del aire por adsorción	228, 265
CE 579	Filtración profunda	223, 266
CE 581	Tratamiento de aguas: planta 1	269
CE 582	Tratamiento de aguas: planta 2	269
CE 583	Adsorción	228, 268
CE 584	Oxidación avanzada	232, 268
CE 586	Precipitación y floculación	268
CE 587	Flotación por aire disuelto	221, 266
CE 588	Demostración de la flotación por aire disuelto	221, 266
CE 600	Rectificación continua	227
CE 602	Rectificación discontinua	227
CE 610	Comparación de columnas de rectificación	227
CE 620	Extracción líquido-líquido	230
CE 630	Extracción sólido-líquido	230, 270
CE 640	Producción biotecnológica de etanol	234, 256
CE 642	Planta de biogás	234, 256
CE 650	Planta de biodiésel	232, 256
CE 701	Proceso de biopelícula	233, 267
JL /U1	i i oooso de niohelionig	دان, ۱۵۵

CE 702	Tratamiento anaerobio de aguas	234, 267
CE 704	Proceso SBR	233, 267
CE 705	Proceso de lodos activados	233, 267
CE 715	Evaporación en película ascendente	226
CE 730	Reactor airlift	233, 267

СТ			
CT 100.20	Motor de gasolina de cuatro tiempos para CT 110		97
CT 100.21	Motor de gasolina de dos tiempos para CT 110		97
CT 100.22	Motor diésel de cuatro tiempos para CT 110		97
CT 100.23	Motor diésel de cuatro tiempos, refrigerado por agua, para	CT 110	97
CT 110	Banco de pruebas para motores de un cilindro, 7,5 kW		97
CT 150	Motor de gasolina de cuatro tiempos para CT 159	96, 178,	198
CT 151	Motor diésel de cuatro tiempos para CT 159	96, 178,	198
CT 153	Motor de gasolina de dos tiempos para CT 159	96, 178,	198
CT 159	Banco de pruebas modular para motores de un cilindro,		
	3kW	96, 178,	198
CT 300	Banco de pruebas para motores, 11 kW		98
CT 300.04	Motor de dos cilindros de gasolina para CT 300		98
CT 300.05	Motor de dos cilindros diésel para CT 300		98
CT 400	Unidad de carga, 75 kW para motores de cuatro cilindros		98
CT 400.01	Motor de gasolina de cuatro cilindros para CT 400	<u> </u>	98
CT 400.02	Motor diésel de cuatro cilindros para CT 400		98

EM 049	EM 049 Equilibrio de momentos en una palanca de dos brazos	
ET		
ET 101	Circuito de refrigeración por compresión sencillo	112, 248
ET 102	Bomba de calor	100, 102, 122, 259
ET 120	Refrigeración con ayuda del efecto Peltier	99, 112
ET 122	Generador de frío vortex	99, 112
ET 144	Instalación eléctrica en instalaciones frigoríficas	130

ET 101	Circuito de refrigeración por compresión sencillo	112, 248
ET 102	Bomba de calor 10	00, 102, 122, 259
ET 120	Refrigeración con ayuda del efecto Peltier	99, 112
ET 122	Generador de frío vortex	99, 112
ET 144	Instalación eléctrica en instalaciones frigoríficas	130
ET 165	Instalación frigorífica con compresor abierto	117, 190, 200
ET 170	Fallos eléctricos en instalaciones de aire acondicionado	sencillas 131
ET 171	Conexión eléctrica de compresores de refrigerante	130
ET 172	Fallos eléctricos en compresores de refrigerante	131
ET 174	Fallos eléctricos en instalaciones de aire acondicionado	completas 131
ET 180	Presostatos en la refrigeración	118
ET 182	Reguladores secundarios en instalaciones frigoríficas	118
ET 192	Cambio de componentes de una instalación frigorífica	119
ET 202	Fundamentos de la energía térmica solar	101, 245
ET 202.01	Colector cilindro parabólico	101, 245
ET 203	Colector de cilindro parabólico con seguimiento del sol	101, 245
ET 210	Fundamentos de las centrales eólicas	174, 250
ET 220	Conversión de energía en una central eólica	174, 250, 258
ET 220.01	Central eólica	174, 250, 258
ET 220.10	Equipo de mando para central eólica ET 220.01	174, 250, 258
ET 222	Cadena cinemática de energía eólica	174, 252
ET 224	Comportamiento de funcionamiento de central eólica	174, 252
ET 250	Medición en módulos solares	244, 246
ET 250.01	Energía solar fotovoltaica para funcionamiento en paral	elo a la red 244
ET 250.02	Energía solar fotovoltaica para funcionamiento en isla	244
ET 252	Medición en células solares	244
ET 255	Opciones de operación de los sistemas modulares de energía fotovoltaica	244, 257
ET 255.01	Simulador fotovoltaico	244
ET 255.02	Módulos fotovoltaicos para el sistema de energía fotovo	oltaica 244
ET 255.03	Consumidores en sistemas de energía fotovoltaica	244
ET 256	Refrigeración con energía fotovoltaica	123, 246
ET 262	Sonda geotérmica con principio heatpipe	101, 248
ET 264	Utilización de la geotermia con sistema de dos pozos	102, 248
ET 270	Central undimotriz	175, 255
ET 292	Sistema de pila combustible	259
ET 300	Cambiador de calor de tubos de aletas agua/aire	90

ET 350	Cambios de estado en el circuito de refrigeración	100, 113
ET 351C	Termodinámica del circuito de refrigeración	116, 170
ET 352	Compresor de chorro de vapor en la refrigeración 99, 11	2, 123, 190, 246
ET 352.01	Refrigeración solar térmica	123, 246
ET 360	Circuito de refrigeración con propano	99, 112
ET 380	Circuito frigorífico: instalación frigorífica y bomba de cale	or 116
ET 400	Circuito de refrigeración con carga variable	99, 113
ET 405	Bomba de calor para modo de refrigeración	
	y de calefacción	102, 118, 122
ET 411C	Instalación frigorífica de compresión	113
ET 412C	Instalación frigorífica con cámara de refrigeración y de o	congelación 116
ET 420	Acumuladores de hielo en la refrigeración 102	2, 122, 257, 260
ET 422	Regulación de potencia y fallos en instalaciones frigorífic	as 119
ET 426	Regulación de potencia en instalaciones frigoríficas	118
ET 428	Eficiencia energética en instalaciones frigoríficas	117, 260
ET 430	Instalación frigorífica con compresión de dos etapas	116, 190
ET 431	Cambiadores de calor en el circuito de refrigeración	118
ET 432	Compresor de émbolo en refrigeración	95, 117
ET 441	Cámara de refrigeración y métodos de descongelación	116
ET 450	Sistema de aire acondicionado para vehículos	126
ET 460	Retorno del aceite en instalaciones frigoríficas	119
ET 480	Instalación frigorífica de absorción	99, 112, 123
ET 499.01	Modelo seccionado: compresor de refrigerante herméti	co 48,120
ET 499.02	Modelo seccionado: compresor de refrigerante semiher	mético 48, 120
ET 499.03	Modelo seccionado: compresor de refrigerante abierto,	dos cil. 48, 120
ET 499.12	Modelo seccionado: secador de bloque	48, 120
ET 499.13	Modelo seccionado: separador de aceite	48, 120
ET 499.14	Modelo seccionado: separador de líquidos	49, 120
ET 499.16	Modelo seccionado: válvula de bola	49, 120
ET 499.18	Modelo seccionado: válvula de expansión (termostática)	49, 121
ET 499.19	Modelo seccionado: válvula de expansión (automática)	49, 121
ET 499.21	Modelo seccionado: mirilla con indicador de humedad	49, 121
ET 499.25	Modelo seccionado: válvula reversible de 4 vías	49, 121
ET 499.26	Modelo seccionado: regulador de presión de condensaci	ión 49, 121
ET 499.30	Modelo seccionado: soplante para aire frío	48, 120
ET 500	Compresor de émbolo de dos etapas	95, 187
ET 508	Simulador de un compresor de aire de dos etapas	95
ET 512	Instalación de generación de aire comprimido con compresor de émbolo	95
ET 513	Compresor de émbolo de una etapa 99	5, 187, 200, 257
ET 600	Acondicionamiento de aire ambiente	126
ET 605	Modelo de una instalación de aire acondicionado	103, 124
ET 611	Instalación de aire acondicionado con cámara	126
ET 620	Instalación de aire acondicionado y ventilación	103, 126
ET 630	Acondicionador de aire de dos bloques	126, 262
ET 792	Turbina de gas	94, 173
ET 794		4, 173, 189, 259
ET 796	Turbina de gas como motor a reacción	94, 189
ET 805.50	Determinación del contenido de vapor	93
ET 810	Central térmica de vapor con máquina de vapor	92, 188
ET 813	Máquina de vapor de dos cilindros	92, 189, 199
ET 830	Central térmica de vapor 1,5 kW	93, 188
ET 833	Central térmica de vapor 1,5 kW con sistema de control de procesos	93
ET 850	Generador de vapor	92, 188, 249
ET 851	Turbina de vapor axial	92, 188, 249
ET 852	Generador de vapor eléctrico	92, 188, 249
ET 860	Dispositivos de seguridad en calderas de vapor	92
ET 900	Introducción a la refrigeración	114
ET 910	Sistema de prácticas - refrigeración, unidad básica	114
ET 910.10	Componentes de la refrigeración para ensayos básicos	114
_1 310.10		
	Componentes de la refrigeración para apequas evergado	ne 117
ET 910.11 ET 915	Componentes de la refrigeración para ensayos avanzado Sistema de prácticas HSI – refrigeración e	os 114

ET 915.01	Modelo refrigerador	100, 115
ET 915.02	Modelo instalación frigorífica con etapa de refrigeración	
	y congelación	100, 115
ET 915.06	Modelo instalación de aire acondicionado sencilla	103, 125
ET 915.07	Modelo de climatización	103, 125
ET 930	Regulación del evaporador con válvula de expansión electrónic	a 130

FL		
FL 100	Sistema didáctico de galgas extensométricas	19, 71
FL 101	Juego de aplicación galgas extensométricas	19
FL 102	Determinación del factor k de galgas extensométricas	19
FL 111	Esfuerzos en celosías simples	9
FL 120	Análisis de tensiones en una membrana	20
FL 130	Análisis de tensiones en un recipiente de pared delgada	20
FL 140	Análisis de tensiones en un recipiente de pared gruesa	20
FL 152	Amplificador de medida multicanal	12, 20
FL 160	Flexión asimétrica	19
FL 170	Deformación de vigas de eje curvo	15
FL 200	Ensayos fotoelásticos de tensiones con polariscopio	
	de transmisión	20
FL 210	Demostración fotoelástica de tensiones	20

FT		
FT 100	Fuerzas de corte en el taladrado	70
FT 102	Fuerzas de corte en el torneado	70
FT 200	Conformación por plegado	70
FT 901	Kit de herramientas para taladrar	69
FT 903	Kit de herramientas para avellanar	69
FT 905	Kit de herramientas para escariar	69
FT 907	Kit de herramientas para lijar	69
FT 909	Kit de herramientas para tornear	69
FT 913	Kit de herramientas para fresar	69

GL		
GL 100	Principio de los engranajes	34, 56
GL 105	Modelo cinemático: engranaje	21
GL 110	Mecanismo de leva	34, 56
GL 112	Análisis de los mecanismos de leva	26
GL 200	Engranaje para tornos	35, 56
GL 210	Comportamiento dinámico del engranaje recto multietapa	22, 252
GL 212	Comportamiento dinámico del engranaje planetario multietapa	22, 252
GL 300.01	Modelo seccionado: engranaje de tornillo sin fin	31, 46
GL 300.02	Modelo seccionado: engranaje cónico	31, 46
GL 300.03	Modelo seccionado: engranaje recto	31, 46
GL 300.04	Modelo seccionado: engranaje recto de dos etapas	31, 46
GL 300.05	Modelo seccionado: engranaje planetario	31, 46
GL 300.06	Modelo seccionado: engranaje variable de correa trapezoidal	31, 47
GL 300.07	Modelo seccionado: engranaje de regulación	31, 47
GL 300.08	Modelo seccionado: embrague de discos múltiples	31, 47
GL 300.10	Modelo seccionado: freno monodisco electromagnético	32, 47
GL 300.12	Modelo seccionado: cojinete partido	32, 47
GL 410	Montaje engranajes simples	35, 58
GL 420	Montaje engranajes combinadas	35, 58
GL 430	Montaje cambio manual	35, 58

GU		
GU 100	Web Access Box	73
HL		
HL 101	Panel de prácticas de dilatación térmica	105
HL 102	Ingeniería de instalación: pérdidas en diversas tuberías	145
HL 103	Ingeniería de instalación: pérdidas en codos de tuberías	145
HL 104	Panel de prácticas de medida de temperatura	105
HL 105	Panel de prácticas con válvula mezcladora de tres vías	105
HL 106	Panel de prácticas con válvula mezcladora de cuatro vías	105

HL 107	Panel de prácticas con bombas de circulación	105
HL 108	Panel de prácticas de calefacción	106
HL 109	Panel de prácticas con dispositivos de seguridad	105
HL 110	Panel de prácticas con vaso de expansión	105
HL 111	Ingeniería de instalación: pérdidas en tuberías rectas	145
HL 112	Panel de prácticas con radiadores	106
HL 113	Ingeniería de instalación: pérdidas en robineterías	145
HL 210	Ingeniería de instalación: pérdidas en el sistema de tuberías	145
HL 300	Equipo de demostración de calefacción	107
HL 305	Banco de prácticas para compensación hidráulica de radiadores	3 262
HL 313	Calentamiento de agua sanitaria	
	con colector plano 101, 123, 2	45, 246
HL 314	Calentamiento de agua sanitaria	
	con colector tubular 101, 123, 2	45, 246
HL 320.01	Bomba de calor 104, 122, 248, 2	259, 263
HL 320.02		04, 263
	Colector plano 104, 245, 2	
	•	45, 263
	Módulo de acumulación central con regulador 104, 245, 258, 2	
HL 320.07	-	
	Calefacción soplante / cambiador de calor	
	de aire 104, 122, 248, 2	59, 263
HL 350	Banco de ensayos para quemador de fuel	106
HL 351	Sistema de demostración caldera de calefacción	106
HL 352	Banco de pruebas para quemadores de fuel,	
	de gas natural y de gas propano	101
HL 353	Calentamiento de agua	107
HL 353.01	Comparación de calefacciones de locales	107
HL 353.02	Distribución de calor y regulación en sistemas de calefacción	107
HL 356	Modelo funcional guemador de gas	108
HL 358	Panel de prácticas con quemador de gas de tiro forzado	108
HL 360	Equipo de demostración con depósito de fuel	106
HL 392C	Dispositivos de seguridad de calefacción	107
HL 500	Calentador de gas instantáneo	108
HL 510	Panel didáctico sobre instalaciones domésticas del gas	108
HL 530	Panel de demostración funcionamiento de aparatos a gas	108
HL 620	Panel didáctico sobre regulación de calefacción	106
HL 630	Eficiencia en la técnica de calefacción	262
HL 710		127, 165
HL 720		103, 127
HL 722	Regulación para instalación de ventilación	127
HL 860	Analizador de humos	107
HL 960	Estación de montaje de tuberías y robineterías	62,162
HL 960.01	Montaje y alineación de bombas y accionamientos	62, 162
HL 961	Estación de montaje compacta de tuberías y robineterías	162
HL 962	Banco de pruebas para bombas hidráulicas	64, 164
HL 962.01	Bomba normalizada química	64, 164
HL 962.02	*	64, 164
	Bomba de canal lateral	64, 164
	Bomba normalizada química con acoplamiento magnético	64, 164
. 12 002.04	Some normalizada quimica con acopiamiento magnicilo	J-, 1U-
LIM		

Redes de tuberías	146, 209
Banco de ensayos de mecánica de fluidos	145, 168
Banco de ensayos sobre hidrostática	135, 168, 204
Pérdidas en elementos de tuberías	145
Pérdidas de carga en tuberías	146, 168
Planta de ensayo de mecánica de fluidos	146, 163
Visualización vertical de campos de flujo	152
Visualización de campos de flujo	152, 169
Determinación de la velocidad de descenso	135
Flujo a través de columnas de relleno	152
Transporte de sedimentos en canal abierto	216
Hidrogramas después de la precipitación	217, 270
Separación en tanques de sedimentación	216, 221, 266
	Banco de ensayos de mecánica de fluidos Banco de ensayos sobre hidrostática Pérdidas en elementos de tuberías Pérdidas de carga en tuberías Planta de ensayo de mecánica de fluidos Visualización vertical de campos de flujo Visualización de campos de flujo Determinación de la velocidad de descenso Flujo a través de columnas de relleno Transporte de sedimentos en canal abierto Hidrogramas después de la precipitación

HM 143	Procesos de desagüe no estacionarios	
	en depósitos de reserva	149, 209, 257
HM 144	Formación de cursos de ríos	216
HM 145	Estudios hidrológicos ampliados	217
HM 150	Módulo básico para ensayos sobre mecánica de fluidos	
	Fricción de tubo en un flujo laminar / turbulento	137, 209
	Calibración de instrumentos de medición de presión Vertederos de cresta delgada para el HM 150	134, 204
	Bomba centrífuga	138, 179, 210
	Presión hidrostática en líquidos	135, 204
	Estabilidad de cuerpos flotantes	135, 204
	Principio de Bernoulli	136, 206
HM 150.08	Medición de fuerzas ejercidas por un chorro	136, 206
HM 150.09	Descarga horizontal por orificios 13	36, 149, 168, 205
HM 150.10	Visualización de líneas de corriente	135, 151, 206
HM 150.11	Pérdidas de carga en el sistema de tuberías	137, 209
HM 150.12	Descarga vertical por orificios	136, 149, 205
	Principios fundamentales de la medición de caudal	137
	Formación de vórtices	136, 149
	Ariete hidráulico – elevación con ayuda de golpes de ari	
	Conexión en serie y en paralelo de bombas	138, 179, 210
	Ensayo de Osborne Reynolds Principio de funcionamiento de una turbina Pelton 1;	136, 206 38, 175, 210, 254
	· · · · · · · · · · · · · · · · · · ·	38, 175, 210, 254
	Visualización de líneas de corriente en canales abiertos	
	Pérdida de energía en elementos de tuberías	137
	Cuerpos flotantes para HM 150.06	135, 204
HM 152	Flujo potencial	151, 169, 217
HM 153	Visualización de diferentes flujos	152
HM 155	Golpes de ariete en tuberías	149
HM 156	Golpes de ariete y chimenea de equilibrio	149, 209
HM 159.11	Vibraciones propias en el modelo de barco	25
HM 160	Canal de ensayo 86 x 300 mm	139, 211
	Elemento de prolongación del canal de ensayo	215
	Sistema UV para la desinfección	215
	Tubo de Pitot estático Indicador del nivel de agua	214 214
	Diez tubos manométricos	214
	Velocímetro	214
	Indicador del nivel de agua digital	214
HM 161	Canal de ensayo 600 x 800 mm	211
HM 161.13	Medición de presión electrónica	214
HM 161.50	Tubo de Pitot estático	214
HM 161.52	Indicador del nivel de agua	214
HM 161.53	20 tubos manométricos	214
	Portainstrumentos	214
	Velocímetro	214
	Sistema PIV	214
	Portainstrumentos para sistema PIV	214
	Corte de vidrio para sistema PIV Indicador del nivel de agua digital	214
HM 162	Canal de ensayo	214
	Elemento de prolongación del canal de ensayo	215
	Medición de presión electrónica	214
HM 162.14	*	215
	Elemento de prolongación de la galería	215
	Depósito de agua	215
HM 162.29	Compuerta plana deslizante	212
HM 162.30	Juego de vertederos de cresta delgada, cuatro tipos	213
HM 162.31	Vertedero de cresta ancha	212
	Presa-vertedero de perfil Ogee con dos tipos de salidas	
	Vertedero Crump	212
	Presa-vertedero de perfil Ogee con medición de la pres	
	Elementos para la disipación de energía	213
HIVI 162.36	Vertedero de sifón	212

HM 162.38	Reiilla	212
	Compuerta de segmento	212
	Generador de olas	212
HM 162.44		212
	Obra de paso	212
	Juego de pilares, siete perfiles	212
	Tubo de Pitot estático	214
	Canal de Venturi	213
	Indicador del nivel de agua	214
	Diez tubos manométricos	214
	Canal Parshall	213
	Ajuste de la inclinación eléctrico	215
	Portainstrumentos	214
	Pilotes vibratorios	212
	Canal trapezoidal	213
	Velocímetro	214
	Circuito cerrado de sedimentos	213
	Trampa de sedimentos	213
	Alimentador de sedimentos	213
	Base del canal con grava	212
	Juego de playas	212
	Sistema PIV	214
	Portainstrumentos para sistema PIV	214
	Corte de vidrio para sistema PIV	214
	Indicador del nivel de agua digital	214
HM 163	Canal de ensayo	21
	Elemento de prolongación del canal de ensayo	215
HM 163.14		215
	Elemento de prolongación de la galería	215
	Depósito de agua	215
HM 163.50	Tubo de pitot estático	214
	Indicador del nivel de agua	214
	Diez tubos manométricos	214
	Portainstrumentos	214
	Velocímetro	214
HM 163.81	Sistema PIV	214
HM 163.82	Portainstrumentos para sistema PIV	214
HM 163.83	Corte de vidrio para sistema PIV	214
HM 163.91	Indicador del nivel de agua digital	214
HM 164	Flujo en canales abiertos y cerrados	139, 209
HM 165	Estudios hidrológicos	217, 270
HM 166	Fundamentos del transporte de sedimentos	216
HM 167	Flujos de agua subterránea	217, 270
HM 168	Transporte de sedimentos en cursos de ríos	216
HM 169	Visualización de corrientes de infiltración	217, 270
HM 170	Túnel de viento abierto	150, 25°
HM 170.05	Cuerpo de resistencia placa cuadrada	25 ⁻
HM 170.09	Cuerpo de sustentación superficie sustentadora NACA 0015	25 ⁻
HM 170.22	Distribución de la presión en una superficie sustentadora NACA 0015	150, 25°
LINA 470 0 1		
	Estudio de la capa límite con tubo de Pitot	150
	Medición de la estela	150
	Central eólica con variación del paso	150, 25
HM 172	Túnel de viento supersónico con óptica de Schlieren	144
HM 210	Variables características de un soplante radial	127, 186
HM 215	Soplante axial de dos etapas	165, 186
HM 220	Planta de ensayo del flujo de aire	129, 143
	Tubo de Venturi	143
HM 220.02	Mediciones de la capa límite	143
HM 222	Flujo de aire en tuberías y elementos de tuberías	145
HM 225	Banco de ensayos sobre aerodinámica	143, 15
HM 225.02	Capas límite	15
HM 225 03	Principio de Bernoulli	143
11111 EE0.00		
	Fuerzas de resistencia	15

	Efecto Coanda	151
	Chorro libre Visualización de líneas de corriente	143
HM 226	Túnel de viento para la visualización de líneas de corriente 15	151
HM 230	Flujo de fluidos compresibles	144, 169
HM 240	Fundamentos del flujo de aire	128, 142
	Tubo de presión total electrónico	128, 142
	Distribución de presión en el cilindro	128, 142
	Pérdidas de carga en elementos de tuberías	128, 142
	Transferencia de calor convectiva en	120, 142
= .0.00	el cilindro sujeto a flujo incidente transversal	128, 142
HM 241	Fundamentos del flujo de agua 13	38, 142, 169
HM 250		05, 207, 211
	Visualización de flujos en tuberías	140, 208
HM 250.02	Medición del perfil de flujo	140, 208
	Visualización de líneas de corriente	140, 207
HM 250.04	Ecuación de continuidad	140, 207
HM 250.05	Medición de fuerzas ejercidas por un chorro	140, 207
HM 250.06	Descarga libre	141, 205
HM 250.07	Principio de Bernoulli	141, 207
HM 250.08	Pérdidas en elementos de tuberías	141, 208
HM 250.09	Fundamentos de la fricción de tubo	141, 208
HM 250.10	Desarrollo de presión a lo largo de la sección de entrada	141, 208
HM 250.11	Canal abierto	141, 211
HM 250.90	Estantería de laboratorio	141
HM 260	Variables características de toberas	144, 168
HM 261	Distribución de la presión en toberas	144, 168
HM 270	Turbina de impulso	173
HM 272	Turbina de reacción	173
HM 280	Ensayos en un soplante radial	27, 186, 193
HM 282	Ensayos en un soplante axial	27, 186, 193
HM 283	Ensayos en una bomba centrífuga 155, 17	9, 193, 262
HM 284	Conexión en serie y en paralelo de bombas 15	55, 179, 193
HM 285	Ensayos en una bomba de émbolo 15	55, 183, 193
HM 286	<u> </u>	55, 183, 193
HM 287		53, 175, 192
HM 288		54, 177, 192
HM 289		54, 177, 192
HM 290	·	54, 177, 192
HM 291	<u> </u>	54, 177, 192
HM 292 HM 299	Ensayos en un compresor radial Comparación de máquinas generatrices	186, 193
TIIVI ESS	de desplazamiento positivo y turbomáquinas	154, 187
HM 300	Circuito hidráulico con una bomba centrífuga	155, 179
HM 305	Banco de ensayos bomba centrífuga	179
HM 332	Características de bombas en conexión en serie y en paralel	
HM 362	Comparación de bombas	163, 181
HM 365		96, 117, 178,
	y frenado 180-189, 190-19	
HM 365.10	Unidad de alimentación para bombas de agua 18	30, 184, 195
	Bomba centrífuga, diseño estándar	180, 194
	Bomba centrífuga, autocebante	180, 194
HM 365.13	Bomba centrífuga, multietapa	180, 194
HM 365.14	Bombas centrífugas, conexión en serie y en paralelo	180, 194
HM 365.15	Bomba periférica	180, 194
HM 365.16	Bomba de émbolo rotativo	184, 195
HM 365.17	Bomba de émbolo alternativo	184, 195
HM 365.18	Bomba de engranajes	184, 195
HM 365.19	Bomba de paletas	184, 195
HM 365.20	Unidad de alimentación para bombas de aceite	185, 196
HM 365.21	Bomba de husillo	185, 196
HM 365.22	Bomba de engranajes externos	185, 196
HM 365.23	Bomba de paletas	185, 196
	Bomba de engranajes internos	185, 196
HM 365.31	Turbina Pelton y turbina Francis	77, 197, 254

2/4

HM 365.32	Unidad de alimentación para turbinas	177, 197, 254
HM 365.45	Bomba axial	182, 194
HM 380	Cavitación en bombas	148, 169
HM 405	Planta de ensayo de turbomáquinas axiales	153, 163, 175, 182
HM 421	Banco de ensayos turbina de hélice	176, 254
HM 430C	Banco de ensayos turbina Francis	176, 254
HM 450.01	Turbina Pelton	153, 176, 255
HM 450.02	: Turbina Francis	153, 176, 255
HM 450.03	Turbina de hélice	153, 176, 255
HM 450.04	Turbina Kaplan	153, 176, 255
HM 450C	Variables características de turbomáquinas	
	hidráulicas	153, 176, 179, 255
HM 500	Banco de ensayos para caudalímetros	71, 147
HM 700.01	Modelo seccionado: diafragma normalizado	50, 156
HM 700.02	Modelo seccionado: tobera normalizada	50, 156
HM 700.03	Modelo seccionado: medidor de Venturi normalizado	50, 156
HM 700.04	Modelo seccionado: válvula de paso	50, 156
HM 700.05	Modelo seccionado: válvula angular	50, 156
HM 700.06	Modelo seccionado: válvula de asiento inclinado	50, 156
HM 700.07	Modelo seccionado: válvula de retención	50, 156
HM 700.08	Modelo seccionado: válvula de desahogo de presión	50, 156
HM 700.09	Modelo seccionado: filtro de malla	51, 157
HM 700.10	Modelo seccionado: válvula de compuerta	51, 157
HM 700.11	Modelo seccionado: grifo de paso directo	51, 157
HM 700.12	Modelo seccionado: grifo de tres vías	51, 157
HM 700.13	Modelo seccionado: grifo de bola	51, 157
HM 700.14	Modelo seccionado: válvula de seguridad	51, 157
HM 700.15	Modelo seccionado: unión roscada de tubos	51, 157
HM 700.16	Modelo seccionado: aparatos de medición de presión	51, 157
HM 700.17	Modelo seccionado: bomba centrífuga	52, 158
HM 700.20	Modelo seccionado: bomba de émbolo	52, 158
HM 700.22	Modelo seccionado: bomba de engranajes	52, 158
IA		

IA		
IA 110	Calibración de un sensor de presión	70
IA 120	Fundamentos de sensores industriales	70
IA 130	Módulo PLC	80
IA 210	Aplicación de PLC: proceso de manipulación de material	80
IA 500	Proceso automatizado con cobot	79
IA 501	Programación de un servoaccionamiento	79
IA 520	Sistema automatizado de manipulación y fabricación	79

KI		
KI 110	Modelo cinemático: mecanismo de biela-manivela	21
KI 120	Modelo cinemático: plato de manivela	21
KI 130	Modelo cinemático: mecanismo de cuatro barras	21
KI 140	Modelo cinemático: mecanismo de retorno rápido "Whitworth"	21
KI 150	Modelo cinemático: árbol de junta Cardán	21
KI 160	Modelo cinemático: mecanismo de dirección "Ackermann"	21

MG		
MG 100	Kit didáctico: uniones con pasadores	54
MG 110	Kit didáctico: uniones con chavetas	54
MG 120	Kit didáctico: uniones con chavetas inclinadas	54
MG 200	Kit didáctico: uniones roscadas y arandelas	54
MG 901	Kit de tornillos y tuercas	32, 54
MG 903	Kit de seguros de tornillos	32, 54
MG 905	Kit de pernos: perfiles de roscas	32, 54
MG 911	Kit de rodamientos	33, 55

MT		
MT 101	Kit de montaje: válvula de control con accionamiento neumático	61, 72, 160
MT 102	Kit de montaje: válvula de control con accionamiento eléctrico	61, 72, 160

MT 110.10	Modelo seccionado: engranaje recto de tornillo sin fin	60
MT 120	Kit de montaje: engranaje recto	36, 60
MT 121	Kit de montaje: engranaje cónico	36, 60
MT 122	Kit de montaje: engranaje planetario	36, 60
MT 123	Kit de montaje: engranaje recto de tornillo sin fin	36, 60
MT 130	Kit de montaje: bomba centrífuga	63, 161
MT 134	Kit de montaje: bomba de émbolo	63, 161
MT 136	Kit de montaje: bomba de engranajes	60, 63
MT 140.01	Banco de pruebas para el compresor de émbolo	62
MT 141	Kit de montaje: compresor de émbolo	62
MT 142	Eficiencia energética en compresores de pistón	62
MT 154	Kit de montaje: válvula de cierre	61, 160
MT 156	Kit de montaje: compuerta plana de cuña y válvula	
	de asiento inclinado	61, 160
MT 157	Kit de montaje: chapaleta y válvula de retención	61, 160
MT 158	Kit de montaje: grifo de bola y válvula de cierre	61, 160
MT 162	Banco de pruebas hidráulico para robinetería	61, 160
MT 171	Montaje cojinete de deslizamiento hidrodinámico	36, 60
MT 173	Banco de ensayos para engranajes	37, 59
MT 174	Planta de clasificación 37, 59, 6	5, 220, 271
MT 181	Montaje y mantenimiento: bomba centrífuga multietapa	63, 161
MT 182	Montaje y mantenimiento: bomba de tornillo	63, 161
MT 183	Montaje y mantenimiento: bomba de diafragma	63, 161
MT 185	Montaje y mantenimiento: bomba centrífuga en línea	63, 161
MT 190	Montaje aparato de ensayo universal	36, 58
MT 190.01	Montaje adquisición de datos en el aparato de ensayo	36, 58
MT 210	Montaje y mantenimiento: refrigeración	65, 119

00.044
00 044
93, 241
240
237
236
236
238
238
r 239
239

PT		
PT 102	Metrología dimensional, placa espaciadora	68
PT 104	Metrología dimensional, placa angular	68
PT 105	Metrología dimensional, árbol	68
PT 107	Metrología dimensional, carcasa de brida	68
PT 108	Metrología dimensional, árbol receptor	68
PT 109	Metrología dimensional, cubo	68
PT 500	Sistema de diagnóstico de máquinas, unidad básica	28, 66, 253
PT 500.04	Analizador de vibraciones asistido por PC	29, 67
PT 500.05	Equipo de frenado y carga	29, 67
PT 500.10	Kit de árbol elástico	28, 66
PT 500.11	Kit de árbol con fisura	28, 66, 253
PT 500.12	Kit de defectos en rodamientos	28, 66, 253
PT 500.13	Kit de acoplamientos	28, 66
PT 500.14	Kit de transmisión por correa	28, 66
PT 500.15	Kit de defectos en engranajes	28, 66, 253
PT 500.16	Kit de mecanismo de biela y manivela	28, 66
PT 500.17	Kit de cavitación en bombas	29, 67
PT 500.18	Kit de vibraciones en soplantes	29, 67
PT 500.19	Kit de vibraciones electromecánicas	29, 67, 253
PT 501	Daños en rodamientos	29, 67
PT 502	Equilibrado en funcionamiento	26
RT		
RT 010	Sistema de prácticas regulación de nivel, HSI	75

RT 020	Sistema de prácticas regulación de caudal, HSI	75
RT 030	Sistema de prácticas regulación de presión, HSI	75
RT 040	Sistema de prácticas regulación de temperatura, HSI	75
RT 050	Sistema de prácticas regulación de número	
	de revoluciones, HSI	75, 172
RT 060	Sistema de prácticas regulación de posición, HSI	75
RT 304	Banco de calibración	74
RT 306	Ajuste de los sensores de nivel	71
RT 310	Estación de calibración	74
RT 350	Manejo de reguladores industriales	73
RT 380	Optimización de circuitos de control	73
RT 390	Banco de ensayos para válvulas de control	72, 147
RT 395	Mantenimiento de robineterías y actuadores	65, 72
RT 396	Banco de pruebas para bombas y robineterías 65,	, 72, 147, 260
RT 450	Sistema didáctico automatización de procesos: módulo bas	se 78
RT 450.01	Módulo del sistema controlado: nivel	78
RT 450.02	Módulo del sistema controlado: caudal	78
RT 450.03	Módulo del sistema controlado: presión	78
RT 450.04	Módulo del sistema controlado: temperatura	78
RT 451	Regulación de nivel	76
RT 452	Regulación de caudal	76
RT 453	Regulación de presión	76
RT 454	Regulación de temperatura	76
RT 455	Regulación de pH	76
RT 578	Regulación de cuatro variables de la ingeniería de procesos	s 81
RT 580	Sistemas de control y detección de fallos	81
RT 586	Regulación de la calidad del agua	81
RT 590	Planta de ensayo: ingeniería de control de procesos	81
RT 614	Kit de demostración: regulación de nivel	77
RT 624	Kit de demostración: regulación de caudal	77
RT 634	Kit de demostración: regulación de presión	77
RT 644	Kit de demostración: regulación de temperatura	77
RT 674	Kit de demostración: regulación de caudal y nivel	77
RT 681	Regulación multivariable por desgasificación en vacío	80
RT 682	Regulación multivariable en un depósito de agitación	80
RT 682	Regulación multivariable en un depósito de agitación	260
RT 700	Kit didáctico de fundamentos de hidráulica	74
RT 701	Kit de equipamiento para electrohidráulica	74
RT 710	Servosistema hidráulico	74
RT 770	Kit didáctico de neumática y electroneumática con PLC	74
RT 800	Aplicación de PLC: proceso de mezclado	80
SE		
SE 100	Pactidan pana ancayos da acfuenza 400kN	20

SE		
SE 100	Bastidor para ensayos de esfuerzo, 400 kN	38
SE 110.12	Líneas de influencia en una viga Gerber	10
SE 110.14	Línea elástica de una viga	14
SE 110.16	Arco parabólico	10
SE 110.17	Arco triarticulado	10
SE 110.18	Esfuerzos en un puente colgante	9
SE 110.19	Estudio de problemas de estabilidad sencillos	18
SE 110.20	Deformación de pórticos	15
SE 110.21	Esfuerzos en diversos montajes de celosías planas	12
SE 110.22	Esfuerzos en celosías hiperestáticas	12
SE 110.29	Torsión de barras	14
SE 110.44	Deformación de celosías	15
SE 110.47	Métodos para determinar la línea elástica	14
SE 110.48	Ensayo de flexión, deformación plástica	38
SE 110.50	Catenaria	11
SE 110.53	Equilibrio en un sistema plano estáticamente determinado	8
SE 110.57	Pandeo de barras	18
SE 110.58	Vibración libre en una viga de flexión	24
SE 112	Bastidor de montaje	8
SE 130	Esfuerzos en celosías tipo Howe	12
SE 130.01	Esfuerzos en celosías tipo Warren	12
SE 200	MEC - Frame digital & inteligente	12, 16

SE 200.01	MEC - Esfuerzos en las celosías	12
SE 200.02	MEC - Esfuerzos en un puente colgante	5
SE 200.03	MEC - Puente de arco parabólico	10
SE 200.04	MEC - Rozamiento en un plano inclinado	13
SE 200.05	MEC - Fuerzas del cable y polipasto	8
SE 200.06	MEC - Arco triarticulado	10
SE 200.07	MEC - Viga Gerber	10
SE 200.08	MEC - Pandeo	18
SE 200.09	MEC - Deformación de pórticos	15
SE 200.10	MEC - Torsión de barras	14
SE 200.11	MEC - Línea elástica de las vigas	14
SE 200.21	MEC - Apoyo	17
SE 200.22	MEC - Unidad de carga	17
SE 200.23	MEC - Medición de la distancia	17
SE 200.24	MEC - Carga vertical	17
SE 200.25	MEC - Carga	17
SE 200.26	MEC - Carga uniforme	17
SE 200.27	MEC - Juego de barras	17

ST		
ST 210	Panel de medida para instalaciones sanitarias	109
ST 250	Cavitación	148, 169
ST 310	Sistema de demostración de agua potable	109
ST 320	Panel de demostración limpieza de tuberías	109
ST 330	Panel de prácticas de protección de agua potable	109
ST 510	Sistema de demostración de instalaciones de desagüe	109, 165

T1.4		
TM	5 1 1 10	
TM 110	Fundamentos de la estática	8
	Equipo complementario plano inclinado y rozamiento	8
	Equipo complementario polipastos	8
	Equipo complementario engranajes	8
TM 115	Esfuerzos en plumas de grúa	8
TM 121	Equilibrio de momentos en poleas de cable	9
TM 122	Equilibrio de momentos en un polipasto diferencial	9
TM 123	Engranaje recto	34, 57
TM 124	Engranaje de tornillo sin fin	34, 57
TM 125	Torno de cable	34, 57
TM 140	Vibraciones torsionales libres y forzadas	25
TM 150	Sistema didáctico de vibraciones	24
TM 150.02	Vibraciones torsionales libres y amortiguadas	25
TM 155	Vibraciones libres y forzadas	25
TM 161	Péndulo físico y de hilo	24
TM 162	Péndulos con suspensión bifilar/trifilar	24
TM 163	Vibraciones torsionales	24
TM 164	Vibraciones en muelles en espiral	24
TM 170	Equipo de equilibrado	26
TM 180	Fuerzas en motores alternativos	26, 172
TM 182	Vibraciones en fundamentos de máquinas	27
TM 182.01	Compresor de émbolo para TM 182	27
TM 200	Fundamentos del rozamiento mecánico	13
TM 210	Rozamiento de cuerpos sólidos	13
TM 220	Transmisión por correa y rozamiento de la correa	13, 34, 57
TM 225	Rozamiento en un plano inclinado	13
TM 232	Rozamiento en cojinetes	41, 57
TM 260	Unidad de accionamiento para ensayos tribológicos	40
TM 260.01	Rozamiento por rodadura en ruedas de rozamiento	40
TM 260.02	Comportamiento elastohidrodinámico	40
TM 260.03	Desgaste de un perno en un disco	40
TM 260.04	Vibraciones por rozamiento	40
TM 260.05	Desgaste de un bloque en un cilindro	40
TM 260.06	Distribución de presión en cojinetes de deslizamiento	40
TM 262	Presión de Hertz	15
TM 280	Distribución de presión en cojinetes de deslizamiento	41
TM 282	Rozamiento en cojinetes de deslizamiento	41, 57

276

TM 290	Cojinete de deslizamiento con lubricación hidrodinámica	41
TM 310	Comprobación de roscas	33, 55
TM 320	Comprobación de uniones roscadas	33, 55
TM 400	Ley de Hooke	15
TM 600	Fuerza centrífuga	23
TM 605	Fuerza de Coriolis	23, 136
TM 610	Momento de inercia rotacional	22
TM 611	Dinámica de un cuerpo rígido sobre el plano inclinado	22
TM 612	Modelo cinetico: volante de inercia	22
TM 620	Rotores flexoelásticos	25, 172
TM 625	Árboles elásticos	25
TM 630	Giroscopio	23
TM 632	Reguladores centrífugos	23, 172

TZ		
TZ 100	Imaginación espacial con representación de tres vistas	30, 44
TZ 110	Modelos cilíndricos con cortes paralelos al eje	44
TZ 120	Modelos cilíndricos con cortes oblicuos	44
TZ 130	Modelos prismáticos con cortes paralelos a los cantos	44
TZ 140	Modelos prismáticos con cortes oblicuos	44
TZ 200.01	Kit de montaje: prensa de plegado	30, 45
TZ 200.07	Kit de montaje: cizalla de palanca	30, 45
TZ 300	Kit de montaje: prensa de palanca	30, 45

VS		
VS 101	Modelo seccionado: boca de riego subterránea	52, 158
VS 102	Modelo seccionado: válvula de compuerta oval plana de cuña	52, 158
VS 103	Modelo seccionado: válvula de asiento recto	52, 158
VS 104	Modelo seccionado: válvula de múltiples vías	52, 158
VS 105	Modelo seccionado: contador de gas	52, 158
VS 106	Modelo seccionado: válvula anti-retorno	53, 159
VS 107	Modelo seccionado: chapaleta de retención	53, 159
VS 108	Modelo seccionado: contador de agua	53, 159
VS 109	Modelo seccionado: filtro de malla	53, 159

WL		
WL 102	Cambio de estado de los gases	84, 134, 170
WL 103	Expansión de gases ideales	84, 134
WL 110	Unidad de alimentación para cambiadores de calor	89, 171, 247, 261
WL 110.01	Cambiador de calor de tubos concéntricos	89, 171, 247, 261
WL 110.02	Cambiador de calor de placas	89, 171, 247, 261
WL 110.03	Cambiador de calor de carcasa y tubos	89, 171, 247, 261
WL 110.04	Depósito de agitación con doble camisa y serpentín	89, 171, 247, 261
WL 110.05	Cambiador de calor de tubos de aletas	89, 171, 247, 261
WL 201	Fundamentos de la medida de humedad del aire	84, 124
WL 202	Fundamentos de la medida de temperatura	71, 84, 134
WL 203	Fundamentos de la medida de presión	84, 134
WL 204	Presión de vapor del agua	85, 134, 170
WL 205	Curva de vapor de agua	85, 134, 170
WL 210	Proceso de evaporación	85, 170
WL 220	Proceso de ebullición	85, 170
WL 225	Transferencia de calor en lecho fluidizado	91
WL 230	Proceso de condensación	85, 170
WL 302	Transferencia de calor en el cambiador de calor	
	de tubos concéntricos	90
WL 308	Transferencia de calor en el flujo en tuberías	89
WL 312	Transferencia de calor en el flujo de aire	90, 129
WL 312.01	Transferencia de calor en los tubos lisos	129
WL 312.02	Transferencia de calor en los tubos con aletas	129
WL 312.03	Transferencia de calor en el evaporador para refrigera	nte 129
WL 314	Transferencia de calor convectiva de flujo de aire	88
WL 314.01	Transferencia de calor en los tubos de flujo paralelo	88
WL 314.02	Transferencia de calor en los tubos de flujo mixto	88
WL 314.03	Transferencia de calor en el tubo	88
WL 315.01	Cambiador de calor de carcasa y tubos vapor-agua	90

WL 315C	Comparación entre diferentes cambiadores de calor	90, 247
WL 320	Torre de refrigeración por vía húmeda	91, 124, 171
WL 320.01	Columnas de refrigeración, tipo 2	91, 124, 171
WL 320.02	Columnas de refrigeración, tipo 3	91, 124, 171
WL 320.03	Columnas de refrigeración, tipo 4	91, 124, 171
WL 320.04	Columnas de refrigeración, tipo 5	91, 124, 171
WL 362	Transferencia de energía a través de radiación	86
WL 372	Conducción de calor radial y lineal	87, 170
WL 376	Conductividad térmica de materiales para construcción	87, 261
WL 377	Convección y radiación	86, 245
WL 420	Conducción de calor en metales	87
WL 422	Conducción de calor en fluidos	87
WL 430	Conducción de calor y convección	86
WL 440	Convección libre y forzada	86, 170
WL 460	Transferencia de calor por radiación	86
WL 900	Conducción de calor en estado estacionario y no estacionario	b 87
WL 920	Medida de temperatura	84

WP		
WP 100	Deformación de barras por flexión o torsión	14
WP 120	Pandeo de barras	18
WP 121	Demostración: casos del pandeo de "Euler"	18
WP 130	Comprobación de hipótesis de tensiones	19
WP 140	Ensayo resistencia a la fatiga	39
WP 300	Ensayo de materiales, 20 kN	38
WP 310	Ensayo de materiales, 50 kN	38
WP 400	Ensayo de resiliencia, 25 Nm	38
WP 410	Ensayo de resiliencia, 300 Nm	38
WP 500	Ensayo de torsión, 30 Nm	39
WP 510	Ensayo de torsión 200 Nm, accionamiento a motor	39
WP 600	Ensayo de fluencia	39
WP 950	Deformación de vigas de eje recto	14
WP 960	Viga biapoyada: esfuerzo cortante y momento flector	11
WP 961	Viga biapoyada: esfuerzo cortante	11
WP 962	Viga biapoyada: momento flector	11

278

Contacto

G.U.N.T. Gerätebau GmbH Hanskampring 15-17 22885 Barsbuettel Alemania

+49 40670854-0 sales@gunt.de www.gunt.de

Visite nuestra página web **www.gunt.de**