LABORATORY PLANNING GUIDE

L51 Advanced Control Engineering Laboratory

Content
Covered subjects according to the curriculum of Strength of Materials ... 2
Main concept.. 2
Initial training provided for laboratory personnel .. 3
Requirements / Utilities .. 3
Schedule of Requirements ... 4
Laboratory Drawing ... 5
Covered subjects according to the curriculum

Major topics of learning content:
- planning and construction of different process applications
- planning and construction of different automation solutions for the control systems
- commissioning and optimisation of automated process applications
- making process connections (via pipes/hoses)
- connecting up the electricity supply and the instrumentation and control components
- fundamentals of the use of data acquisition, system control and parameter setting by software
- comparison of different sensors for level measurement
- comparison of different sensors for flow measurement
- level / flow cascade control
- planning, setting up, testing, optimising and assessing pressure control loops with different objectives and components
 * constructing a 1st order pressure control system
 * constructing a 2nd order pressure control system
- functional range of a digital process controller
- configuration, parameterisation and operation via keyboard
- familiarisation with an industry-standard configuration software
- signal links and standard current signals
- Profibus card as communications interface (CIF)
- functional range of a line recorder
- functional range of control valves
 * electro-pneumatically driven
 * pneumatically driven
 * electrically driven
- functional range of a PLC
- programming a PLC using included programming software
- electrical connections and signal links

Main concept

The laboratory is designed for accommodation of 24 students + 2 laboratory staff:
- 2 - 4 students form a team and work together at a workstation / training system
- 8 workstations, all differently configurable
- All workstations are floor standing
- All workstations are equipped with a PC
- Each workstation is equipped with a manual containing technical information, basic theory, experiment instructions, evaluation help and safety advice.
- Student teams are scheduled to change workstations from lab session to lab session in order to perform the entire range of experiments within the course duration.
- Average time per experiment: 90 to 120 minutes.

2 workstations for laboratory staff (with PC and internet access)
1 printer for common use
1 cupboard for small parts, consumables, tools, paper etc.
1 printer for common use
1 cupboard for small parts, consumables, tools, paper etc.

Initial training provided for laboratory personnel

To be conducted immediately after installation and commissioning of the equipment.

General topics to be covered for any of the educational systems:
- Basic familiarization with the system.
- Functions and components.
- Overall system configuration aspects.
- Start-up and operational aspects.
- Conduction experiments, including evaluation and calculation.
- Using the system with and without the software (where applicable).
- Trouble shooting and maintenance aspects.
- Hands-on, practical familiarization aspects.
- Seminar participants with the delivered system.
- Details of the manuals.
- Safe operation and preventive maintenance.

Requirements / Utilities

Power supply:
- 230 V / 50 Hz / 1 phase – at least 25 power sockets

Others:
- Compressed air

Laboratory computer network:
- 2 internet connections for staff
- 8 internet connections for students

Location:
- Laboratory space min 72 m²
- This laboratory could be installed on any floor (e.g. ground floor or 1st floor)
Schedule of requirements

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Process automation training system: base module</td>
<td>8 pcs.</td>
</tr>
<tr>
<td>Item 1.1</td>
<td>Controlled system module: level</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.2</td>
<td>Controlled system module: flow</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.3</td>
<td>Controlled system module: pressure</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.5</td>
<td>Controlled system module: temperature</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.6</td>
<td>Continuous controller module</td>
<td>8 pcs.</td>
</tr>
<tr>
<td>Item 1.7</td>
<td>Switching controller module</td>
<td>8 pcs.</td>
</tr>
<tr>
<td>Item 1.8</td>
<td>Chart recorder module</td>
<td>8 pcs.</td>
</tr>
<tr>
<td>Item 1.9</td>
<td>Digital display</td>
<td>8 pcs.</td>
</tr>
<tr>
<td>Item 1.10</td>
<td>Software for controller configuration</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 1.11</td>
<td>Control valve, pneumatically driven, Kvs 0,4</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.12</td>
<td>Control valve, pneumatically driven, Kvs 1,0</td>
<td>6 pcs.</td>
</tr>
<tr>
<td>Item 1.13</td>
<td>Control valve, electrically driven, Kvs 0,4</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.14</td>
<td>Control valve, electrically driven, Kvs 1,0</td>
<td>6 pcs.</td>
</tr>
<tr>
<td>Item 1.15</td>
<td>Pressure sensor, 0...6bar</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.16</td>
<td>Pressure sensor, 0...2bar</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.17</td>
<td>Pressure sensor, 0...100mbar</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.18</td>
<td>Orifice with differential pressure sensor</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.19</td>
<td>Flow rate sensor: electromagnetic</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.20</td>
<td>Level sensor, capacitive</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.21</td>
<td>Temperature sensor PT100</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.22</td>
<td>Thermocouple (K) with head transmitter</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.23</td>
<td>Visualisation software</td>
<td>8 pcs.</td>
</tr>
<tr>
<td>Item 1.24</td>
<td>Profibus DP module for controller</td>
<td>8 pcs.</td>
</tr>
<tr>
<td>Item 1.25</td>
<td>PLC module with software</td>
<td>8 pcs.</td>
</tr>
<tr>
<td>Item 1.26</td>
<td>Profibus DP module for PLC</td>
<td>8 pcs.</td>
</tr>
</tbody>
</table>
Laboratory drawing