LABORATORY PLANNING GUIDE

L40 v2 Basic Fluid Mechanics Laboratory

Content
Covered subjects according to the curriculum... 2
Main concept... 3
Initial training provided for laboratory personnel .. 3
Requirements / Utilities .. 4
Schedule of requirements ... 4
Covered subjects according to the curriculum

Major topics of learning content:

- measurements of the pressure loss in laminar and turbulent flow
- determining the critical Reynolds number
- determining the pipe friction factor
- determining the discharge coefficient of plate weirs
- comparison of measuring weirs (Rehbock, Thomson)
- energy conversion in divergent/convergent pipe flow
- recording the pressure curve and the velocity curve in a Venturi nozzle
- study of the jet forces with different flow rates, flow velocities and deflection angles
- trajectory of the water jet at different outlet velocities
- determination of the contraction coefficient for different contours and diameters
- visualisation of streamlines:
 - flow around drag bodies
 - flow through changes in cross-section
 - influence of sources and sinks
 - how differently shaped weirs affect the flow
- pressure losses in different pipes, piping elements and fittings
- opening characteristics of angle seat valve and gate valve
- flow measurement with
 - orifice plate flow meter and measuring nozzle
 - Venturi nozzle
 - rotameter
- vertical flow from a tank
- investigation of free and forced vortices
- demonstrate formation and effect of water hammers
- determining the fan efficiency and fan characteristic
- the pressure distribution around a cylinder subject to transverse incident flow
- convective heat transfer of a cylinder in an air-flow tube
- experiments in the field of steady, incompressible flows by means of different measuring:
 - calculation of the flow rate and the flow velocity
 - recording the different velocity profiles in both the free jet and the pipe cross-section
- examination of the continuity equation and Bernoulli’s principle
- determination of the dynamic pressure
- investigation of the boundary layer on a flat plate
- study of buoyancy on a variety of bodies
- study of the density of liquids
- hydrostatic pressure, Pascal’s law
- communicating vessels
- determination of the centre of pressure
- study of surface tensions
- demonstration of capillarity
- Boyle’s law
- study of static and dynamic pressure component in flowing fluid
- learning of various methods of pressure measurement
Main concept

The laboratory is designed for accommodation of 24 students + 2 laboratory staff:

- 2 - 4 students form a team and work together at a workstation / training system
- 16 different workstations
- Each experiment base unit is floor standing
- The base units are equipped by different experiment accessories
- 1 workstation is equipped with a PC
- Each workstation is equipped with a manual containing technical information, basic theory, experiment instructions, evaluation help and safety advice.
- Student teams are scheduled to change workstations from lab session to lab session in order to perform the entire range of experiments within the course duration.
- Average time per experiment: 90 to 120 minutes.

2 workstations for laboratory staff (with PC and internet access)

1 printer for common use

1 cupboard for small parts, consumables, tools, paper etc.

1 large shelf for the storage of unused experiment accessories

Initial training provided for laboratory personnel

To be conducted immediately after installation and commissioning of the equipment.

General topics to be covered for any of the educational systems:

- Basic familiarization with the system.
- Functions and components.
- Overall system configuration aspects.
- Start-up and operational aspects.
- Conduction experiments, including evaluation and calculation.
- Using the system with and without the software (where applicable).
- Trouble shooting and maintenance aspects.
- Hands-on, practical familiarization aspects.
- Seminar participants with the delivered system.
- Details of the manuals.
- Safe operation and preventive maintenance.
Requirements / Utilities

Power supply:
- 230 V / 50 Hz / 1 phase – at least 25 power sockets distributed according to lab lay-out

Water:
- 12 x cold water
- 12 x drain

Laboratory computer network:
- 2 internet connections for staff
- 1 internet connection for students

Location:
- Laboratory space min 120 m²
- This laboratory could be installed on any floor (e.g. ground floor or 1st floor)

Schedule of requirements

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Base module for experiments in fluid mechanics</td>
<td>12 pcs.</td>
</tr>
<tr>
<td>Item 1.1</td>
<td>Pipe friction for laminar / turbulent flow</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.2</td>
<td>Plate weirs for HM 150</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.3</td>
<td>Bernoulli's principle</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.4</td>
<td>Measurement of jet forces</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.5</td>
<td>Horizontal flow from a tank</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.6</td>
<td>Visualisation of streamlines</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.7</td>
<td>Losses in a pipe system</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.8</td>
<td>Vertical flow from a tank</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.9</td>
<td>Methods of flow measurement</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.10</td>
<td>Vortex formation</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.11</td>
<td>Hydraulic ram – pumping using water hammer</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.12</td>
<td>Osborne Reynolds experiment</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.13</td>
<td>Visualisation of streamlines in an open channel</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 1.14</td>
<td>Energy losses in piping elements</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Item 2</td>
<td>Principles of air flow</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 2.2</td>
<td>Power meter</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 2.3</td>
<td>Electronic total pressure sensor</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 2.4</td>
<td>Pressure distribution on a cylinder</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 2.5</td>
<td>Friction losses in pipe elements</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 2.6</td>
<td>Heat transfer at a cylinder in transverse flow</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 3</td>
<td>Air flow experimental plant</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 3.1</td>
<td>Venturi tube</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 3.2</td>
<td>Measurement of boundary layers</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 4</td>
<td>Hydrostatics trainer</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 5</td>
<td>Pressure losses in pipes</td>
<td>1 pcs.</td>
</tr>
</tbody>
</table>