Course engineering mechanics

GUNT-Structure Line

A course on engineering mechanics
Course engineering mechanics

In GUNT, the term “structure” refers to a supporting structure or a building structure. The term “line” refers to a GUNT series of units. The GUNT-Structure Line is a series of units that has been specially developed by GUNT to support teaching basic engineering principles with practical exercises.

The GUNT-Structure Line offers the following advantages:

- Meaningful compilation of experiment subjects
- Wide range of experiments: one frame is combined with different add-on parts
- Easy to transport and space-saving storage of the add-on parts thanks to stackable storage systems
- Orderliness when conducting experiments, thanks to individual parts being stored in clear foam inserts

The series of units offers a variety of opportunities to learn about common topics such as equilibrium conditions, forces and deformations or stability and buckling and to develop a more in-depth understanding.

Experiments on statics

- SE 110.16 Parabolic arch
- SE 110.50 Cable under dead weight
- SE 110.21 Forces in various single plane trusses

Experiments on strength of materials

- SE 110.44 Deformation of trusses
- SE 110.47 Methods to determine the elastic line
- SE 110.19 Investigation of simple stability problems
Didactic concept of the GUNT-Structure Line

The GUNT-Structure Line allows you to build an extensive laboratory on the fundamentals of engineering. In this way, the rather abstract contents of the lecture can be practically simulated and clearly represented through small-group experiments. This promotes students’ long-term learning success. Meanwhile, group participants’ social skills are encouraged in addition to their more technical skills.

The software forms a bridge between the mechanical model and the didactic material in paper form.

Trusses can be simulated and configured in the software. Similarly, the behaviour of truss systems is reflected in concrete measured values and the bar forces are graphically displayed (SE 110.21, SE 110.22).

A fundamental section with the relevant theory and model-based experiment instructions allow an intensive preparation for the experiment. Sample experiment results allow a qualified assessment of the students’ own results.

Didactic material in paper form and in digital form as PDF

The software forms a bridge between the mechanical model and the didactic material in paper form. Trusses can be simulated and configured in the software. Similarly, the behaviour of truss systems is reflected in concrete measured values and the bar forces are graphically displayed (SE 110.21, SE 110.22).

Frame, components and connecting elements are combined into a functioning experimental setup. The points of action for loads, their effect on the support structures and structural elements and the use of fixed and movable supports are tested. This makes the function and the processes in support systems easy to observe and understand and it ensures a lasting learning experience.

How does manual experimentation promote skills?

- The abstract structural diagram must be implemented in a real experimental setup. This requires imagination, judgement and manual dexterity. Students learn how to technically realise abstract concepts such as clamping or flexible supports. The limits of idealisation are also made clear.

- Terms such as stability and balance of a system are illustrated by the manual application of the load.

- The load on the experimental setups, mainly from weights, gives students a feeling for masses and forces.

- Measuring the deformation using dial gauges provides direct feedback of the load. The factors of slack, friction and the resulting hysteresis – which are almost always present in real systems – can be experienced.

Manual experimentation promotes the following capabilities:

- planning experimental series
- setup of experiments
- encouraging abstraction skills
- encouraging manual work and technical ability
- encouraging effective teamwork
- implementing theoretical teaching subjects in the experiment
- developing an understanding of forces and stresses
- evaluating results
- estimating errors

A fundamental section with the relevant theory and model-based experiment instructions allow an intensive preparation for the experiment. Sample experiment results allow a qualified assessment of the students’ own results.

Didactic materials offer excellent support when preparing lessons, when conducting the experiments and when reviewing the experiment.

Unit-specific, supplementary GUNT software

The software forms a bridge between the mechanical model and the didactic material in paper form. Trusses can be simulated and configured in the software. Similarly, the behaviour of truss systems is reflected in concrete measured values and the bar forces are graphically displayed (SE 110.21, SE 110.22).
The series of units covers topics such equilibrium conditions, forces and deformations or stability and buckling. The units represent self-contained learning units from a topic in terms of the learning objectives. For a complete experimental setup, the components of an experimental unit are assembled in the SE 112 mounting frame.

Equilibrium conditions
- **SE 110.50** Cable under dead-weight
 - determine catenary of a free-hanging cable
 - measure sag
 - compare calculated and measured values
- **SE 110.53** Equilibrium in a single plane, statically determinate system
 - the main principle of the practical experimentation: free-body diagrams in statics
 - calculation of support forces
 - application of the 1st and 2nd equilibrium conditions of statics
- **SE 110.12** Lines of influence on the Gerber beam
 - application of the method of sections and the equilibrium conditions of statics to calculate the support forces
 - determine the internal reactions under static load
- **SE 110.16** Parabolic arch
 - mechanical fundamentals of the parabolic arch
 - differences between statically determinate and statically indeterminate arches
 - influence of load on the support forces and deformation of the arch
- **SE 110.17** Three-hinged arch
 - investigation of how the load affects the horizontal thrust in the supports
 - determine the influence lines for the supports under a moving load
- **SE 110.18** Forces on a suspension bridge
 - calculate supporting cable force
 - observe the effect of internal moments in the carriageway under uneven load

Bridges, beams and arches
- **SE 110.21** Forces in various single plane trusses
 - dependence of bar forces on external forces
 - comparison of measuring results with mathematical solutions using: the method of joints and Ritter’s method of sections
- **SE 110.22** Forces in an overdeterminate truss
 - distribution of forces in a plane truss, depending on the use of a redundant bar
 - dependence of bar forces on an external force
- **SE 110.44** Deformation of trusses
 - work-energy theorem and deformation energy
 - application of Castigliano’s first theorem for calculating deformation at a defined point
 - comparison of the deformations of different trusses under the same load

Forces and deformations in a truss
- **SE 110.29** Torsion of bars
 - shear modulus and polar second moment of area
 - angle of twist as a function of the clamping length/twisting moment
 - influence of torsional stiffness on twist
- **SE 110.48** Bending test plastic deformation
 - load of a bending beam with a point load
 - create a force-path diagram

Elastic and permanent deformations
- **SE 110.14** Elastic line of a beam
 - elastic line under different loads/support conditions
 - demonstration of Maxwell-Betti’s theorem
- **SE 110.47** Methods to determine the elastic line
 - principle of virtual work (calculation), Mohr’s analogy (Mohr’s method on an area of moments; graphical approach)
 - applying the superposition principle of engineering
- **SE 110.20** Deformation of frames
 - interaction between stress and strain on the frame
 - first-order law of elasticity for statically determinate and indeterminate systems
- **SE 110.29** Torsion of bars
 - shear modulus and polar second moment of area
 - angle of twist as a function of the clamping length/twisting moment
 - influence of torsional stiffness on twist

Stability and buckling
- **SE 110.57** Buckling of bars
 - investigate buckling behaviour under the influence of different supports, clamps, cross-sections, materials, or additional transverse stress
 - test Euler’s theory: buckling on elastic bars
 - calculate the expected buckling force with Euler’s formula
 - graphical analysis of the deflection and the force
- **SE 110.58** Free vibrations in a bending beam
 - free vibration in a vertical and horizontal bending beam
 - determine the natural Rayleigh frequency
 - how do clamping length and mass affect the natural frequency