LABORATORY PLANNING GUIDE

L65 Water Treatment Laboratory

Content
Covered subjects according to the curriculum of Strength of Materials .. 2
Main concept .. 3
Initial training provided for laboratory personnel .. 3
Requirements / Utilities ... 3
Schedule of Requirements .. 4
Laboratory Drawing .. 4
Covered subjects according to the curriculum

Major topics of learning content:

- familiarisation with precipitation and flocculation
 * effect of the pH value on precipitation
 * creation of a stable operating state
 * determination of the required metering quantities (precipitant, coagulant, flocculant)
- functional principle of a lamella separator
- familiarisation with anaerobic water treatment
 * effects of temperature and pH value on anaerobic degradation
 * functional principle of a UASB reactor
 * comparison of single stage and dual stage operation mode
 * monitoring and optimisation of the operating conditions
 * identification of the following influencing factors: sludge loading, volumetric loading and flow velocity in the UASB reactor
- fundamental principle of softening and desalination by ion exchange
 * identification of the different modes of operation of cation and anion exchangers
 * combined use of cation and anion exchangers for desalination
 * exchanging capacities and regeneration
- fundamental principle of the activated sludge process
 * functional principle of nitrification and pre-denitrification
 * creation of a stable operating state
 * identification of the relevant influencing factors
 * efficiency of the pre-denitrification
- fundamental principle of depth filtration by sand filters
 * observation of the pressure conditions in a filter bed
 * determination of pressure losses
 * plotting of Micheau diagrams
 * principle of backwash
- fundamental principle of separation of solids from suspensions in a sedimentation tank
 * efficiency of the separation process dependent on solid concentration of suspension, flow rate and position of baffle plate
 * investigation of flow conditions dependent on flow rate and position of baffle plate
Main concept
The laboratory is designed for accommodation of 24 students + 2 laboratory staff:
- 2 - 4 students form a team and work together at a workstation / training system
- 6 different workstations
- All workstations are floor standing
- 3 of the workstations are equipped with a PC
- Each workstation is equipped with a manual containing technical information, basic theory, experiment instructions, evaluation help and safety advice.
- Student teams are scheduled to change workstations from lab session to lab session in order to perform the entire range of experiments within the course duration.
- Average time per experiment: 90 to 120 minutes.

2 workstations for laboratory staff (with PC and internet access)
1 printer for common use
1 cupboard for small parts, consumables, tools, paper etc.

Initial training provided for laboratory personnel
To be conducted immediately after installation and commissioning of the equipment.

General topics to be covered for any of the educational systems:
- Basic familiarization with the system.
- Functions and components.
- Overall system configuration aspects.
- Start-up and operational aspects.
- Conduction experiments, including evaluation and calculation.
- Using the system with and without the software (where applicable).
- Trouble shooting and maintenance aspects.
- Hands-on, practical familiarization aspects.
- Seminar participants with the delivered system.
- Details of the manuals.
- Safe operation and preventive maintenance.

Requirements / Utilities

Power supply:
- 230 V / 50 Hz / 1 phase – at least 15 power sockets
- 400 V / 50 Hz / 3 phases – at least 2 power sockets

Water:
- 5 x cold water
- 5 x drain

Laboratory computer network:
- 2 internet connections for staff
- 3 internet connections for students

Location:
- Laboratory space min 84 m²
- This laboratory should be installed on the ground floor
Schedule of requirements

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Precipitation and flocculation</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 2</td>
<td>Anaerobic water treatment</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 3</td>
<td>Ion exchange</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 4</td>
<td>Activated sludge process</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 5</td>
<td>Depth filtration</td>
<td>1 pcs.</td>
</tr>
<tr>
<td>Item 6</td>
<td>Separation in sedimentation tanks</td>
<td>1 pcs.</td>
</tr>
</tbody>
</table>

Laboratory drawing